
Stream Programming
Guide

Contents

Introduction to Stream Programming Guide for Cocoa 4
Organization of This Document 4
See Also 5

Cocoa Streams 6

Reading From Input Streams 8
Preparing the Stream Object 8
Handling Stream Events 9
Disposing of the Stream Object 11

Writing To Output Streams 12
Preparing the Stream Object 12
Handling Stream Events 13
Disposing of the Stream Object 15

Polling Versus Run-Loop Scheduling 17

Handling Stream Errors 20

Setting Up Socket Streams 22
Basic Procedure 22
Securing and Configuring the Connection 23
Initiating an HTTP Request 24
For More Information 25

Document Revision History 26

2013-12-16 | Copyright © 2004, 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

2

Figures and Listings

Cocoa Streams 6
Figure 1 Sources and destinations of stream objects 6

Reading From Input Streams 8
Listing 1 Creating and initializing an NSInputStream object 8
Listing 2 Handling a bytes-available event 10
Listing 3 Closing and releasing the NSInputStream object 11

Writing To Output Streams 12
Listing 1 Creating and initializing an NSOutputStream object for memory 13
Listing 2 Handling a space-available event 14
Listing 3 Closing and releasing the NSInputStream object 15

Polling Versus Run-Loop Scheduling 17
Listing 1 Writing to an output stream using polling 17

Handling Stream Errors 20
Listing 1 Handling stream errors 20

Setting Up Socket Streams 22
Listing 1 Setting up a network socket stream 22
Listing 2 Making an HTTP GET request 24

2013-12-16 | Copyright © 2004, 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

3

Important: This is a preliminary document for an API or technology in development. Apple is supplying
this information to help you plan for the adoption of the technologies and programming interfaces described
herein for use on Apple-branded products. This information is subject to change, and software implemented
according to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future betas of the API or technology.

A stream is a fundamental abstraction in programming: a sequence of bits transmitted serially from one point
to another point. Cocoa provides three classes to represent streams and facilitate their use in your programs:
NSStream, NSInputStream, and NSOutputStream. With the instances of these classes you can read data from,
and write data to, files and application memory. You can also use these objects in socket-based connections
to exchange data with remote hosts. You can also subclass the stream classes to obtain specialized stream
behavior.

Organization of This Document
This document includes the following articles:

 ● Cocoa Streams (page 6) gives an overview of the Cocoa stream classes, describing architecture, capabilities,
and general usage.

 ● Reading From Input Streams (page 8) explains how to create and prepare a (non-socket) input-stream
object. It also describes how to handle stream events generated by all types of NSInputStream objects.

 ● Writing To Output Streams (page 12) explains how to create and prepare a (non-socket) output-stream
object. It also describes how to handle stream events generated by all types of NSOutputStream objects.

 ● Polling Versus Run-Loop Scheduling (page 17) discusses the relative merits of the two techniques used
to avoid blocking when reading and writing to streams. It also illustrates how to poll for stream data using
the API of the stream classes.

 ● Handling Stream Errors (page 20) describes how to handle errors that occur in stream processing.

 ● Setting Up Socket Streams (page 22) explains how to set up stream objects used to communicate with
remote hosts via sockets.

2013-12-16 | Copyright © 2004, 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

4

Introduction to Stream Programming Guide for
Cocoa

See Also
You may find the following external resources helpful if you are implementing socket-based network streams:

 ● OpenSSL — http://www.openssl.org/

 ● Apache SSL — http://www.apache-ssl.org/

 ● SOCKS — http://tools.ietf.org/html/rfc1928

Introduction to Stream Programming Guide for Cocoa
See Also

2013-12-16 | Copyright © 2004, 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

5

http://www.openssl.org/
http://www.apache-ssl.org/
http://tools.ietf.org/html/rfc1928

Streams provide an easy way for a program to exchange data with a variety of media in a device-independent
way. A stream is a contiguous sequence of bits transmitted serially over a communications path. It is
unidirectional and hence, from the perspective of a program, a stream can be an input (or read) stream or an
output (or write) stream. Except for file-based streams, streams are non-seekable—once stream data has been
provided or consumed, it cannot be retrieved again from the stream.

Cocoa includes three stream-related classes: NSStream, NSInputStream, and NSOutputStream. NSStream
is an abstract class that defines the fundamental interface and properties for all stream objects. NSInputStream
and NSOutputStream are subclasses of NSStream and implement default input-stream and output-stream
behavior. You can create NSOutputStream instances for stream data located in memory or written to a file
or C buffer; you can create NSInputStream instances for stream data read from an NSData object or a file.
You can also have NSInputStream and NSOutputStream objects at the end points of a socket-based network
connection and you can use stream objects without loading all of the stream data into memory at once. Figure
1 illustrates the types of input-stream and output-stream objects in terms of their sources or destinations.

Figure 1 Sources and destinations of stream objects

NSOutputStream

Buffer

Memory
(NSData)

Network
socket

Data
(NSData)

Network
socket

Client program

NSInputStream

File File

Because they deal with such a basic computing abstraction (streams), NSStream and its subclasses are intended
for lower-level programming tasks. If there is a higher-level Cocoa API that is more suited for a particular task
(for example, NSURL or NSFileHandle) use it instead.

2013-12-16 | Copyright © 2004, 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

6

Cocoa Streams

Stream objects have properties associated with them. Most properties have to do with network security and
configuration, namely secure-socket (SSL) levels and SOCKS proxy information. Two important additional
properties are NSStreamDataWrittenToMemoryStreamKey, which permits retrieval of data written to
memory for an output stream, and NSStreamFileCurrentOffsetKey, which allows you to manipulate the
current read or write position in file-based streams.

A stream object also has a delegate associated with it. If a delegate is not explicitly set, the stream object itself
becomes the delegate (a useful convention for custom subclasses). A stream object invokes the sole delegation
method stream:handleEvent: for each stream-related event it handles. Of particular importance are the
events that indicate when bytes are available to read from an input stream and when an output stream signals
that it’s ready to accept bytes. For these two events, the delegate sends the stream the appropriate
message—read:maxLength: or write:maxlength:, depending on type of stream—to get the bytes from
the stream or to put bytes on the stream.

NSStream is built on the CFStream layer of Core Foundation. This close relationship means that the concrete
subclasses of NSStream, NSOutputStream and NSInputStream, are toll-free bridged with their Core
Foundation counterparts CFWriteStream and CFReadStream. Although there are strong similarities between
the Cocoa and Core Foundation stream APIs, their implementations are not exactly coincident. The Cocoa
stream classes use the delegation model for asynchronous behavior (assuming run-loop scheduling) while
Core Foundation uses client callbacks. The Core Foundation stream types sets the client (termed a context in
Core Foundation) differently than the NSStream sets the delegate; calls to set the delegate should not be mixed
with calls to set the context. Otherwise you can freely intermix calls from the two APIs in your code.

Despite their strong similarities, NSStream does give you a major advantage over CFStream. Because of its
Objective-C underpinnings, it is extensible. You can subclass NSStream, NSInputStream, or NSOutputStream
to customize stream attributes and behavior. For example, you could create an input stream that maintains
statistics on the bytes it reads; or you could make a NSStream subclass whose instances can seek through
their stream, putting back bytes that have been read. NSStream has its own set of required overrides, as do
NSInputStream and NSOutputStream. See the reference documentation for NSStream, NSInputStream,
and NSOutputStream for details on subclassing these classes.

Cocoa Streams

2013-12-16 | Copyright © 2004, 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

7

In Cocoa, reading from an NSInputStream instance consists of several steps:

1. Create and initialize an instance of NSInputStream from a source of data.

2. Schedule the stream object on a run loop and open the stream.

3. Handle the events that the stream object reports to its delegate.

4. When there is no more data to read, dispose of the stream object.

The following discussion goes into each of these steps in more detail.

Note: The examples in this document show the strategy of scheduling stream objects on run loops
and setting a delegate to handle stream events. You may use polling instead of run-loop scheduling
if you prefer that approach. However, run-loop scheduling with delegation is the preferred approach
for various reasons (described in Polling Versus Run-Loop Scheduling (page 17)), and that is why it
is highlighted in this document.

Preparing the Stream Object
To begin using an NSInputStream object you must have (after first locating, if necessary) a source of data
for the stream. The source of data can be a file, an NSData object, or a network socket.

Note: The procedure for initializing input-stream objects from network sockets is different from the
procedure for the other two data sources, and is not covered in this article. To learn about initializing
an NSInputStream instance for a network connection, see Setting Up Socket Streams (page 22).

The initializers and factory methods for NSInputStream allow you to create and initialize the instance from an
NSData or file. Listing 1 shows an NSInputStream instance created from a file.

Listing 1 Creating and initializing an NSInputStream object

- (void)setUpStreamForFile:(NSString *)path {

// iStream is NSInputStream instance variable

2013-12-16 | Copyright © 2004, 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

8

Reading From Input Streams

iStream = [[NSInputStream alloc] initWithFileAtPath:path];

[iStream setDelegate:self];

[iStream scheduleInRunLoop:[NSRunLoop currentRunLoop]

forMode:NSDefaultRunLoopMode];

[iStream open];

}

As this example shows, after you create the object you should set the delegate (more often than not to self).
The delegate receives stream:handleEvent: messages from the NSInputStream object when that object
is scheduled on the run loop and has stream-related events to report, such as when there are bytes on the
stream to be read.

Before you open the stream to begin the streaming of data, send a scheduleInRunLoop:forMode:message
to the stream object to schedule it to receive stream events on a run loop. By doing this, you are helping the
delegate to avoid blocking when there is no data on the stream to read. If streaming is taking place on another
thread, be sure to schedule the stream object on that thread’s run loop. You should never attempt to access
a scheduled stream from a thread different than the one owning the stream’s run loop. Finally, send the
NSInputStream instance an open message to start the streaming of data from the input source.

Handling Stream Events
After a stream object is sent open, you can find out about its status, whether it has bytes available to read,
and the nature of any error with the following messages:

streamStatus

hasBytesAvailable

streamError

The returned status is an NSStreamStatus constant indicating that the stream is opening, reading, at the
end of the stream, and so on. The returned error is an NSError object encapsulating information about any
error that took place. (See the reference documentation for NSStream for descriptions of NSStreamStatus
and other stream types.)

More importantly, once the stream object has been opened, it keeps sendingstream:handleEvent:messages
to its delegate until it encounters the end of the stream. These messages include a parameter with an
NSStreamEvent constant that indicates the type of event. For NSInputStream objects, the most common
types of events are NSStreamEventOpenCompleted, NSStreamEventHasBytesAvailable, and

Reading From Input Streams
Handling Stream Events

2013-12-16 | Copyright © 2004, 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

9

NSStreamEventEndEncountered. The delegate is typically most interested in
NSStreamEventHasBytesAvailable events. Listing 2 illustrates a good approach for handling this type of
event.

Listing 2 Handling a bytes-available event

- (void)stream:(NSStream *)stream handleEvent:(NSStreamEvent)eventCode {

switch(eventCode) {

case NSStreamEventHasBytesAvailable:

{

if(!_data) {

_data = [[NSMutableData data] retain];

}

uint8_t buf[1024];

unsigned int len = 0;

len = [(NSInputStream *)stream read:buf maxLength:1024];

if(len) {

[_data appendBytes:(const void *)buf length:len];

// bytesRead is an instance variable of type NSNumber.

[bytesRead setIntValue:[bytesRead intValue]+len];

} else {

NSLog(@"no buffer!");

}

break;

}

// continued

In this implementation of stream:handleEvent: the delegate uses a switch statement to identify the
passed-in NSStreamEvent constant. If the constant is NSStreamEventHasBytesAvailable, the delegate
first lazily creates (if necessary) an NSMutableData object (_data) to hold the retrieved bytes. Then it declares
a buffer of a certain size (1024 bytes, in this case) and invokes the stream object’s read:maxLength: method,
which fills up the buffer with the specified number of bytes. If the read operation successfully fetched bytes
from the stream, the delegate appends these bytes to the NSMutableData object.

Reading From Input Streams
Handling Stream Events

2013-12-16 | Copyright © 2004, 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

10

There is no firm guideline on how many bytes to read at one time. Although it may be possible to read all the
data in the stream in one event, this depends on the length of the stream (that is, the number of bytes in it)
as well as the behavior of the kernel, including device and socket characteristics. The best approach is to use
some reasonable buffer size, such as 512 bytes, one kilobyte (as in the example above), or a page size (four
kilobytes).

When the NSInputStream object experiences errors processing the stream, it stops streaming and notifies
its delegate with a NSStreamEventErrorOccurred. The delegate should handle the error in its
stream:handleEvent: method as described in Handling Stream Errors (page 20).

Disposing of the Stream Object
When an NSInputStream object reaches the end of a stream, it sends the delegate a
NSStreamEventEndEncountered event in a stream:handleEvent:message. The delegate should dispose
of the object by doing the mirror-opposite of what it did to prepare the object. In other words, it should first
close the stream object, remove it from the run loop, and finally release it. Listing 3 gives an example of how
you might do this.

Listing 3 Closing and releasing the NSInputStream object

- (void)stream:(NSStream *)stream handleEvent:(NSStreamEvent)eventCode

{

switch(eventCode) {

case NSStreamEventEndEncountered:

{

[stream close];

[stream removeFromRunLoop:[NSRunLoop currentRunLoop]

forMode:NSDefaultRunLoopMode];

[stream release];

stream = nil; // stream is ivar, so reinit it

break;

}

// continued ...

}

}

Reading From Input Streams
Disposing of the Stream Object

2013-12-16 | Copyright © 2004, 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

11

Using an NSOutputStream instance to write to an output stream requires several steps:

1. Create and initialize an instance of NSOutputStream with a repository for the written data. Also set a
delegate.

2. Schedule the stream object on a run loop and open the stream.

3. Handle the events that the stream object reports to its delegate.

4. If the stream object has written data to memory, obtain the data by requesting the
NSStreamDataWrittenToMemoryStreamKey property.

5. When there is no more data to write, dispose of the stream object.

The following discussion goes into each of these steps in more detail.

Note: The examples in this document show the strategy of scheduling stream objects on run loops
and setting a delegate to handle stream events. You may use polling instead of run-loop scheduling
if you prefer that approach. However, run-loop scheduling with delegation is the preferred approach
for various reasons (described in Polling Versus Run-Loop Scheduling (page 17)), and that is why it
is highlighted in this document.

Preparing the Stream Object
To begin using an NSOutputStream object you must specify a destination for the data written to the stream.
The destination for an output-stream object can be a file, a C buffer, application memory, or a network socket.

2013-12-16 | Copyright © 2004, 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

12

Writing To Output Streams

Note: The procedure for initializing output-stream objects from network sockets is different from
the procedure for the other data destinations, and is not covered in this article. To learn about
initializing an NSOutputStream instance for a network connection, see Setting Up Socket
Streams (page 22).

The initializers and factory methods for NSOutputStream allow you to create and initialize the instance with
a file, a buffer, or memory. Listing 1 shows the creation of an NSOutputStream instance that will write data
to application memory.

Listing 1 Creating and initializing an NSOutputStream object for memory

- (void)createOutputStream {

NSLog(@"Creating and opening NSOutputStream...");

// oStream is an instance variable

oStream = [[NSOutputStream alloc] initToMemory];

[oStream setDelegate:self];

[oStream scheduleInRunLoop:[NSRunLoop currentRunLoop]

forMode:NSDefaultRunLoopMode];

[oStream open];

}

As the code in Listing 1 shows, after you create the object you should set the delegate (more often than not
to self). The delegate receives stream:handleEvent: messages from the NSOutputStream object when
that object has stream-related events to report, such as when the stream has space for bytes.

Before you open the stream to begin the streaming of data, send a scheduleInRunLoop:forMode:message
to the stream object to schedule it to receive stream events on a run loop. By doing this, you are helping the
delegate to avoid blocking when the stream is unable to accept more bytes. If streaming is taking place on
another thread, be sure to schedule the stream object on that thread’s run loop. You should never attempt to
access a scheduled stream from a thread different than the one owning the stream’s run loop. Finally, send
the NSOutputStream instance an open message to start the streaming of data to the output container.

Handling Stream Events
After a stream object is sent open, you can find out about its status, whether it has space for writing data, and
the nature of any error with the following messages:

streamStatus

Writing To Output Streams
Handling Stream Events

2013-12-16 | Copyright © 2004, 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

13

hasSpaceAvailable

streamError

The returned status is an NSStreamStatus constant indicating that the stream is opening, writing, at the end
of the stream, and so on. The returned error is an NSError object encapsulating information about any error
that took place. (See the reference documentation for NSStream for descriptions of NSStreamStatus and
other stream types.)

More importantly, once the stream object has been opened, it keeps sendingstream:handleEvent:messages
to its delegate (as long as the delegate continues to put bytes on the stream) until it encounters the end of
the stream. These messages include a parameter with an NSStreamEvent constant that indicates the type of
event. For NSOutputStream objects, the most common types of events are NSStreamEventOpenCompleted,
NSStreamEventHasSpaceAvailable, and NSStreamEventEndEncountered. The delegate is typically
most interested in NSStreamEventHasSpaceAvailable events. Listing 2 illustrates one approach you could
take to handle this type of event.

Listing 2 Handling a space-available event

- (void)stream:(NSStream *)stream handleEvent:(NSStreamEvent)eventCode

{

switch(eventCode) {

case NSStreamEventHasSpaceAvailable:

{

uint8_t *readBytes = (uint8_t *)[_data mutableBytes];

readBytes += byteIndex; // instance variable to move pointer

int data_len = [_data length];

unsigned int len = ((data_len - byteIndex >= 1024) ?

1024 : (data_len-byteIndex));

uint8_t buf[len];

(void)memcpy(buf, readBytes, len);

len = [stream write:(const uint8_t *)buf maxLength:len];

byteIndex += len;

break;

}

// continued ...

}

}

Writing To Output Streams
Handling Stream Events

2013-12-16 | Copyright © 2004, 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

14

In this implementation of stream:handleEvent: the delegate uses a switch statement to identify the
passed-in NSStreamEvent constant. If the constant is NSStreamEventHasSpacesAvailable, the delegate
gets the bytes held by a NSMutableData object (_data) and advances the pointer for the current write
operation. It next determines the byte capacity of the impending write operation (1024 or the remaining bytes
to write), declares a buffer of that size, and copies that amount of data to the buffer. Next the delegate invokes
the output-stream object’s write:maxLength: method to put the buffer’s contents onto the output stream.
Finally it advances the index used to advance the readBytes pointer for the next operation.

If the delegate receives an NSStreamEventHasSpaceAvailable event and does not write anything to the
stream, it does not receive further space-available events from the run loop until the NSOutputStream object
receives more bytes. When this happens, the run loop is restarted for space-available events. If this scenario
is likely in your implementation, you can have the delegate set a flag when it doesn’t write to the stream upon
receiving an NSStreamEventHasSpaceAvailable event. Later, when your program has more bytes to write,
it can check this flag and, if set, write to the output-stream instance directly.

There is no firm guideline on how many bytes to write at one time. Although it may be possible to write all
the data to the stream in one event, this depends on external factors, such as the behavior of the kernel and
device and socket characteristics. The best approach is to use some reasonable buffer size, such as 512 bytes,
one kilobyte (as in the example above), or a page size (four kilobytes).

When the NSOutputStream object experiences errors writing to the stream, it stops streaming and notifies
its delegate with a NSStreamEventErrorOccurred. The delegate should handle the error in its
stream:handleEvent: method as described in Handling Stream Errors (page 20).

Disposing of the Stream Object
When an NSOutputStream object concludes writing data to an output stream, it sends the delegate a
NSStreamEventEndEncountered event in a stream:handleEvent: message. At this point the delegate
should dispose of the stream object by doing the mirror-opposite of what it did to prepare the object. In other
words, it should first close the stream object, remove it from the run loop, and finally release it. Furthermore,
if the destination for the NSOutputStream object is application memory (that is, you created the instance
using initToMemory or the factory method outputStreamToMemory), you might now want to retrieve the
data held in memory. Listing 3 illustrates how you might do all of these things.

Listing 3 Closing and releasing the NSInputStream object

- (void)stream:(NSStream *)stream handleEvent:(NSStreamEvent)eventCode

{

switch(eventCode) {

case NSStreamEventEndEncountered:

Writing To Output Streams
Disposing of the Stream Object

2013-12-16 | Copyright © 2004, 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

15

{

NSData *newData = [oStream propertyForKey:

NSStreamDataWrittenToMemoryStreamKey];

if (!newData) {

NSLog(@"No data written to memory!");

} else {

[self processData:newData];

}

[stream close];

[stream removeFromRunLoop:[NSRunLoop currentRunLoop]

forMode:NSDefaultRunLoopMode];

[stream release];

oStream = nil; // oStream is instance variable

break;

}

// continued ...

}

}

You get the stream data written to memory by sending the NSOutputStream object a propertyForKey:
message, specifying a key of NSStreamDataWrittenToMemoryStreamKey The stream object returns the
data in an NSData object.

Writing To Output Streams
Disposing of the Stream Object

2013-12-16 | Copyright © 2004, 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

16

A potential problem with stream processing is blocking. A thread that is writing to or reading from a stream
might have to wait indefinitely until there is (respectively) space on the stream to put bytes or bytes on the
stream that can be read. In effect, the thread is at the mercy of the stream, and that can spell trouble for an
application. Blocking can especially be a problem with socket streams because they are dependent on responses
from a remote host.

With Cocoa streams you have two ways to handle stream events:

 ● Run-loop scheduling. You schedule a stream object on a run loop so that the delegate receives messages
reporting stream-related events only when blocking is unlikely to take place. For read and write operations,
the pertinent NSStreamEvent constants are NSStreamHasBytesAvailable and
NSStreamHasSpaceAvailable.

 ● Polling. In a closed loop broken only at the end of the stream or upon error, you keep asking the stream
object if it has (for read streams) bytes available to read or (for write streams) space available for writing.
The pertinent methods are hasBytesAvailable (NSInputStream) and hasSpaceAvailable
(NSOutputStream).

Run-loop scheduling is almost always preferable over polling, and that is why the code examples in Reading
From Input Streams (page 8) and Writing To Output Streams (page 12) exclusively show the use of run loops.
With polling, your program is locked in a tight loop, waiting for stream events that might or might not be
imminent. With run-loop scheduling, your program can go off and do other things, knowing that it will be
notified when there is a stream event to handle. Moreover, run loops save you from having to manage state
and are more efficient than polling. Polling is also CPU-intensive; there are other things you can be doing with
your processing time.

That said, there can be situations where polling is a viable option. For example, if you are porting legacy code,
you might choose to use polling because it is better suited to the threading model in the legacy code. Listing
1 illustrates a method that writes data to an output stream using polling.

Listing 1 Writing to an output stream using polling

- (void)createNewFile {

oStream = [[NSOutputStream alloc] initToMemory];

[oStream open];

2013-12-16 | Copyright © 2004, 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

17

Polling Versus Run-Loop Scheduling

uint8_t *readBytes = (uint8_t *)[data mutableBytes];

uint8_t buf[1024];

int len = 1024;

while (1) {

if (len == 0) break;

if ([oStream hasSpaceAvailable]) {

(void)strncpy(buf, readBytes, len);

readBytes += len;

if ([oStream write:(const uint8_t *)buf maxLength:len] == -1) {

[self handleError:[oStream streamError]];

break;

}

[bytesWritten setIntValue:[bytesWritten intValue]+len];

len = (([data length] - [bytesWritten intValue] >= 1024) ? 1024 :

[data length] - [bytesWritten intValue]);

}

}

NSData *newData = [oStream propertyForKey:

NSStreamDataWrittenToMemoryStreamKey];

if (!newData) {

NSLog(@"No data written to memory!");

} else {

[self processData:newData];

}

[oStream close];

[oStream release];

oStream = nil;

}

It should be pointed out that neither the polling nor run-loop scheduling approaches are airtight defenses
against blocking. If the NSInputStream hasBytesAvailable method or the NSOutputStream
hasSpaceAvailable method returns NO, it means in both cases that the stream definitely has no available
bytes or space. However, if either of these methods returns YES, it can mean that there is available bytes or

Polling Versus Run-Loop Scheduling

2013-12-16 | Copyright © 2004, 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

18

space or that the only way to find out is to attempt a read or a write operation (which could lead to a momentary
block). The NSStreamEventHasBytesAvailable and NSStreamEventHasSpaceAvailable stream events
have identical semantics.

Polling Versus Run-Loop Scheduling

2013-12-16 | Copyright © 2004, 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

19

Occasionally, and especially with sockets, streams can experience errors that prevent further processing of
stream data. Generally, errors indicate the absence of something at one end of a stream, such as the crash of
a remote host or the deletion of a file being streamed. There is a little that a client of a stream can do when
most errors occur except report the error to the user. Although a stream object that has reported an error can
be queried for state before it is closed, it cannot be reused for read or write operations.

The NSStream and NSOutputStream classes inform you if an error occurred in several ways:

 ● If the stream object is scheduled on a run loop, the object reports a NSStreamEventErrorOccurred
event to its delegate in a stream:handleEvent: message.

 ● At any time, the client can send a streamStatus message to a stream object and see if it returns
NSStreamStatusError.

 ● If you attempt to write to an NSOutputStream object by sending it write:maxLength: and it returns
-1, a write error has occurred.

Once you have determined that a stream object experienced an error, you can query the object with a
streamError message to get more information about the error (in the form of an NSError object). Next,
inform the user about the error. Listing 1 shows how the delegate of a run loop-scheduled stream object might
handle an error.

Listing 1 Handling stream errors

- (void)stream:(NSStream *)stream handleEvent:(NSStreamEvent)eventCode {

NSLog(@"stream:handleEvent: is invoked...");

switch(eventCode) {

case NSStreamEventErrorOccurred:

{

NSError *theError = [stream streamError];

NSAlert *theAlert = [[NSAlert alloc] init];

[theAlert setMessageText:@"Error reading stream!"];

[theAlert setInformativeText:[NSString stringWithFormat:@"Error %i:
%@",

2013-12-16 | Copyright © 2004, 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

20

Handling Stream Errors

[theError code], [theError localizedDescription]]];

[theAlert addButtonWithTitle:@"OK"];

[theAlert beginSheetModalForWindow:[NSApp mainWindow]

modalDelegate:self

didEndSelector:@selector(alertDidEnd:returnCode:contextInfo:)

contextInfo:nil];

[stream close];

[stream release];

break;

}

// continued

}

}

Handling Stream Errors

2013-12-16 | Copyright © 2004, 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

21

You can use the CFStream API to establish a socket connection and, with the stream object (or objects) created
as a result, send data to and receive data from a remote host. You can also configure the connection for security.

Basic Procedure
The NSStream class does not support connecting to a remote host on iOS. CFStream does support this behavior,
however, and once you have created your streams with the CFStream API, you can take advantage of the
toll-free bridge between CFStream and NSStream to cast your CFStreams to NSStreams. Just call the
CFStreamCreatePairWithSocketToHost function, providing a host name and a port number, to receive
both a CFReadStreamRef and a CFWriteStreamRef for the given host. You can then cast these objects to
an NSInputStream and an NSOutputStream and proceed.

Listing 1 illustrates the use of CFStreamCreatePairWithSocketToHost. This example shows the creation
of both a CFReadStreamRef object and a CFWriteStreamRef object. If you want to receive only one of
these objects, just specify NULL as the parameter value for the unwanted object.

Listing 1 Setting up a network socket stream

- (IBAction)searchForSite:(id)sender

{

NSString *urlStr = [sender stringValue];

if (![urlStr isEqualToString:@""]) {

NSURL *website = [NSURL URLWithString:urlStr];

if (!website) {

NSLog(@"%@ is not a valid URL");

return;

}

CFReadStreamRef readStream;

CFWriteStreamRef writeStream;

CFStreamCreatePairWithSocketToHost(NULL, (CFStringRef)[website host], 80,
&readStream, &writeStream);

2013-12-16 | Copyright © 2004, 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

22

Setting Up Socket Streams

NSInputStream *inputStream = (__bridge_transfer NSInputStream *)readStream;

NSOutputStream *outputStream = (__bridge_transfer NSOutputStream
*)writeStream;

[inputStream setDelegate:self];

[outputStream setDelegate:self];

[inputStream scheduleInRunLoop:[NSRunLoop currentRunLoop]
forMode:NSDefaultRunLoopMode];

[outputStream scheduleInRunLoop:[NSRunLoop currentRunLoop]
forMode:NSDefaultRunLoopMode];

[inputStream open];

[outputStream open];

/* Store a reference to the input and output streams so that

they don't go away.... */

...

}

}

If you pass in invalid parameters, one or both of the requested CFReadStreamRef and CFWriteStreamRef
objects are NULL. Once you have cast the CFStreams to NSStreams, set the delegate, schedule the stream on
a run loop, and open the stream as usual. The delegate should begin to receive stream-event messages
(stream:handleEvent:). See Reading From Input Streams (page 8) and Writing To Output Streams (page
12) for more information.

Securing and Configuring the Connection
Before you open a stream object, you might want to set security and other features for the connection to the
remote host (which might be, for example, an HTTPS server). NSStream defines properties that affect the
security of TCP/IP socket connections in two ways:

 ● Secure Socket Layer (SSL).

A security protocol using digital certificates to provide data encryption, server authentication, message
integrity, and (optionally) client authentication for TCP/IP connections.

 ● SOCKS proxy server.

Setting Up Socket Streams
Securing and Configuring the Connection

2013-12-16 | Copyright © 2004, 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

23

A server that sits between a client application and a real server over a TCP/IP connection. It intercepts
requests to the real server and, if it cannot fulfill them from a cache of recently requested files, forwards
them to the real server. SOCKS proxy servers help improve performance over a network and can also be
used to filter requests.

For SSL security, NSStream defines various security-level properties (for example,
NSStreamSocketSecurityLevelSSLv2). You set these properties by sending setProperty:forKey: to
the stream object using the key NSStreamSocketSecurityLevelKey, as in this sample message:

[inputStream setProperty:NSStreamSocketSecurityLevelTLSv1
forKey:NSStreamSocketSecurityLevelKey];

You must set the property before you open the stream. Once it opens, it goes through a handshake protocol
to find out what level of SSL security the other side of the connection is using. If the security level is not
compatible with the specified property, the stream object generates an error event. However, if you request
a negotiated security level (NSStreamSocketSecurityLevelNegotiatedSSL), the security level becomes
the highest that both sides of the connection can implement. Still, if you try to set an SSL security level when
the remote host is not secure, an error is generated.

To configure a SOCKS proxy server for a connection, you need to construct a dictionary with keys of the form
NSStreamSOCKSProxyNameKey (for example, NSStreamSOCKSProxyHostKey). The value of each key is
the SOCKS proxy setting that Name refers to. Then using setProperty:forKey:, set the dictionary as the
value of the NSStreamSOCKSProxyConfigurationKey.

Initiating an HTTP Request
If you are opening a connection to an HTTP server (that is, a website), then you may have to initiate a transaction
with that server by sending it an HTTP request. A good time to make this request is when the delegate of the
NSOutputStreamobject receives aNSStreamEventHasSpaceAvailableevent via astream:handleEvent:
message. Listing 2 shows the delegate creating an HTTP GET request and writing it to the output stream, after
which it immediately closes the stream object.

Listing 2 Making an HTTP GET request

- (void)stream:(NSStream *)stream handleEvent:(NSStreamEvent)eventCode {

NSLog(@"stream:handleEvent: is invoked...");

switch(eventCode) {

Setting Up Socket Streams
Initiating an HTTP Request

2013-12-16 | Copyright © 2004, 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

24

case NSStreamEventHasSpaceAvailable:

{

if (stream == oStream) {

NSString * str = [NSString stringWithFormat:

@"GET / HTTP/1.0\r\n\r\n"];

const uint8_t * rawstring =

(const uint8_t *)[str UTF8String];

[oStream write:rawstring maxLength:strlen(rawstring)];

[oStream close];

}

break;

}

// continued ...

}

}

For More Information
To learn more about using streams for networking, read Networking Overview .

Setting Up Socket Streams
For More Information

2013-12-16 | Copyright © 2004, 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

25

This table describes the changes to Stream Programming Guide .

NotesDate

Removed inappropriate example of automatically falling back from a
secure connection to an insecure connection.

2013-12-16

Clarified behavior of CFStreamCreatePairWithSocketToHost.2012-09-19

Updated code listings in the Setting Up Socket Streams chapter.2009-12-16

Added links to related concepts.2009-08-28

Added a missing comment to a code sample.2009-05-06

Fixed broken links.2008-10-15

Fixed a broken link.2006-10-03

Changed event in code listing on writing to a network stream to
NSStreamEventHasSpaceAvailable.

2006-04-04

Fixed bugs and changed title from "Streams."2005-07-07

Fixed bug in code example (Radar 3597799).2004-07-21

First version of Streams .2004-02-20

2013-12-16 | Copyright © 2004, 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

26

Document Revision History

Apple Inc.
Copyright © 2004, 2013 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer or device for personal use only and to
print copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.

No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-branded products.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Objective-C, and
Spaces are trademarks of Apple Inc., registered
in the U.S. and other countries.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT, ERROR OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.

Some jurisdictions do not allow the exclusion of
implied warranties or liability, so the above exclusion
may not apply to you.

	Stream Programming Guide
	Contents
	Figures and Listings
	Introduction
	Cocoa Streams
	Reading From Input Streams
	Preparing the Stream Object
	Handling Stream Events
	Disposing of the Stream Object

	Writing To Output Streams
	Preparing the Stream Object
	Handling Stream Events
	Disposing of the Stream Object

	Polling Versus Run-Loop Scheduling
	Handling Stream Errors
	Setting Up Socket Streams
	Basic Procedure
	Securing and Configuring the Connection
	Initiating an HTTP Request
	For More Information

	Revision History

