
SignaKit by
InvasiveCode
The SignaKit framework allows you to add a handwritten signature to

any single- or multi-page PDF file. Additonally, the framework offers

functionalities such as PDF browsing and sharing.

Installation
To add the SignaKit framework to your Xcode project, go to the

General preference tab of your Target. Drag the SignaKit.framework

file and drop it onto the Embedded Binaries.

Usage
SignaKit exposes the ISKSignaKitViewController class and the

ISKSignaKitViewControllerDelegate protocol.

You must import the framework in your classes:

In Objective-C:

@import SignaKit;

In Swift:

import SignaKit

To display a PDF and sign it, you create an instance of

ISKSignaKitViewController using the provided designated initializer

initWithPDFDocument: . The argument of the this initializer is a the URL

to the PDF file you want to present to the user. Next, you set the

SignaKit View Controller’s delegate property to any object of your app.

Finally, you present the instance of ISKSignaKitViewController onto the

screen.

The following example shows how to implement these steps in

Objective-C:

NSURL *documentURL = <the pdf file url>

// You create a new instance of the SignaKit view controller

ISKSignaKitViewController *signaKitViewController =

[[ISKSignaKitViewController alloc]

initWithPDFDocument:documentURL];

// You set its delegate

signaKitViewController.delegate = self;

// You present the view controller on screen

[self.presentViewController:signaKitViewController animated:YES

completion:nil];

In Swift:

let documentURL = <the pdf file url>

// You create a new instance of the SignaKit view controller

let signaKitViewController =

ISKSignaKitViewController(PDFDocument: documentURL)

// You set its delegate

signaKitViewController.delegate = self

// You present the view controller on screen

presentViewController(signaKitViewController, animated: true,

completion: nil)

Implementing the delegate methods
The object that will act as the delegate of the Signa Kit View Controller

must conform to the ISKSignaKitViewControllerDelegate protocol:

In Objective-C:

@import UIKit;

@import SignaKit;

@interface YourViewController : UIViewController

<ISKSignaKitViewControllerDelegate>

In Swift:

import UIKit

import SignaKit

class YourViewController: UIViewController,

ISKSignaKitViewControllerDelegate

The delegate object can now implement the two methods provided by

the protocol.

The first method signaKitViewController:didSignPDFDocumentAtURL:

notifies the delegate that the PDF file has been signed. The second

argument is a URL to the newly created PDF containing the handwritten

signature (or multiple signatures). The original PDF document remains

untouched. The new PDF file is created in the cache folder and you will

have to move or copy that document to another location, depending on

what you want to do with the new PDF that has been created (save it

permanently, send it, etc…).

The protocol provides also an additional method

signaKitViewControllerDidCancel: in response to the user cancelling

the signature.

You are responsible of dismissing the SignaKitViewController.

In Objective-C:

- (void)signaKitViewController:(ISKSignaKitViewController

*)signaKitViewController didSignPDFDocumentAtURL:(NSURL

*)documentURL {

 // Do here what you need with documentURL

 // Dismiss the SignaKit view controller

 [self dismissViewControllerAnimated:YES completion:nil];

}

- (void)signaKitViewControllerDidCancel:

(ISKSignaKitViewController *)signaKitViewController

{

 // Dismiss the SignaKit view controller

 [self dismissViewControllerAnimated:YES completion:nil];

}

In Swift:

func signaKitViewController(signaKitViewController:

ISKSignaKitViewController, didSignPDFDocumentAtURL documentURL:

NSURL?) {

 // Do here what you need with documentURL

 // Dismiss the SignaKit view controller

 self.dismissViewControllerAnimated(true, completion: nil)

}

func signaKitViewControllerDidCancel(signaKitViewController:

ISKSignaKitViewController) {

 // Dismiss the SignaKit view controller

 self.dismissViewControllerAnimated(true, completion: nil)

}

IMPORTANT: App Store
The SignaKit framework is a universal framework and you can use it in

development with both Simulators and Devices.

Before shipping an app with our framework, you need to follow these

instructions:

1. Edit the scheme that you use for archiving your App.

2. Select Archive and then Post-actions.

3. Add a New Run Script Action.

4. In the field Provide build settings from select the target of your

App.

5. Copy and paste the following code in the script editor.

"${SRCROOT}"/SignaKit.framework/INVASIVECODE/archivepostaction.sh

This code assumes that SignaKit.framework is located at the root

directory of Xcode project. If that is not the case, please, change

${SRCROOT} with the path to the framework location.

With this setup, each time you archive your app with that Scheme , after

the process of archiving, the post action will run the script and

SignaKit framework will be ready for the App Store with Bitcode

enabled.

License
To use SignaKit framework in your App you will need a valid

SignaKit.license file. This license is only mandatory if you compile

your App for distribution, that is, when your App is generated for being

deployed to the App Store or Ad Hoc. You can still use SignaKit in

development without the license file.

Use SignaKit in development

If you are using your App in development, the SignaKit framework

works with no license. The first time you present the SignaKit View

Controller, an alert appears on the screen, and a message is logged on

the Xcode console. This alert appears at each App launch. You can

develop and test your App freely.

Use SignaKit in production
Before you ship your App to the App Store or do an Ad Hoc

deployment, you need to obtain a valid license. Contact

INVASIVECODE for obtaining a valid license.

To install a license, you need to add a provided license file to your

Xcode project.

If you ship an App to the App Store or Ad Hoc without a valid license

file, your application will show a message to the user each time the App

tries to use the SignaKit framework. Please, make sure that you have

obtained and installed a valid license file for your App before shipping

it.

For more information about license files, please contact

INVASIVECODE at hello@invasivecode.com

- Copyright (C) 2016 INVASIVECODE Inc. All Rights Reserved.

