
Networking Overview

Contents

About Networking 6
At a Glance 7

Learn Why Networking Is Hard 8
OS X and iOS Provide APIs at Many Levels 9
Secure Communication Is Your Responsibility 9
iOS and OS X Offer Platform-Specific Features 10
Networking Must Be Dynamic and Asynchronous 10

How to Use This Document 10
See Also 11

Learn What’s Happening Under the Hood 11
Learn About Specific Technologies 11
Learn How to Share Documents Between OS X and iOS 11

Designing for Real-World Networks 13
Using Power And Bandwidth Efficiently 13

Batch Your Transfers, and Idle Whenever Possible 14
Download the Smallest Resource Possible, and Cache Resources Locally 15

Handling Network Problems Gracefully 16
Design for Variable Network Interface Availability 16
Design for Variable Network Speed 18
Design for High Latency 18
Test Under Various Conditions 20

Assessing Your Networking Needs 21
Common Networking Tasks 21
Next Steps 23

Discovering and Advertising Network Services 24
Bonjour Service Overview 24

Publishing a Network Service 25
Browsing for and Connecting to a Network Service 26
Resolving a Network Service 27

Multipeer Connectivity Overview 27
To Learn More 28

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

2

Displaying Web and Multimedia Content 29
Opening Web Content or Streaming Media in the Default Application 29
Displaying Web Content in Your Application 29
Displaying Streaming Multimedia Content in Your Application 30

Making HTTP and HTTPS Requests 31
Making Requests Using Foundation 31

Retrieving the Contents of a URL without Delegates 32
Retrieving the Contents of a URL with Delegates 32
Downloading the Contents of a URL to Disk 33
Making a POST Request 34
Configuring Authentication 35
Further Information 36

Making Requests Using Core Foundation 37
Working with Web Services 37

Using Sockets and Socket Streams 39
Choosing a Socket API 39
To Learn More 40

Using Networking Securely 41
Enabling TLS or SSL 41

Connecting Securely to a URL 42
Connecting Securely Using Streams 42
Connecting Securely Using BSD Sockets 42

Using Other Security Protocols in OS X 43
Common Mistakes 43

Be Careful Who You Trust 43
Be Careful What Data You Trust 44
Know That Many Tiny Leaks Can Add Up to a Flood 44
Install Certificates Correctly 45
Never Disable Certificate Chain Validation (Unless You Validate Them Yourself) 45

Platform-Specific Networking Technologies 46
iOS Requires You to Handle Backgrounding and Specify Cellular Usage Policies 46

Restrict Cellular Networking Correctly 46
Handle Backgrounding Correctly 47
Register VoIP Sockets Correctly 47
Register for Captive Network Support 48

OS X Lets You Make Systemwide Changes 48

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

3

Contents

Develop Network Setup Applications 48
Develop Network Kernel Extensions 48

Avoiding Common Networking Mistakes 49
Clean Up Your Connections 49
Avoid POSIX Sockets and CFSocket on iOS Where Possible 49
Avoid Synchronous Networking Calls on the Main Thread 50

Cocoa (Foundation) and CFNetwork (Core Foundation) Code 50
POSIX Code 51

Avoid Resolving DNS Names Before Connecting to a Host 54
Do Not Use NSSocketPort (OS X) or NSFileHandle for General Socket Communication 55

Supporting IPv6 DNS64/NAT64 Networks 57
What’s Driving IPv6 Adoption 57

IPv4 Address Depletion 57
IPv6 More Efficient than IPv4 58
4G Deployment 58
Multimedia Service Compatibility 58
Cost 58

DNS64/NAT64 Transitional Workflow 59
IPv6 and App Store Requirements 61
Common Barriers to Supporting IPv6 61
Ensuring IPv6 DNS64/NAT64 Compatibility 62

Use High-Level Networking Frameworks 63
Don’t Use IP Address Literals 64
Connect Without Preflight 64
Use Appropriately Sized Storage Containers 65
Check Source Code for IPv6 DNS64/NAT64 Incompatibilities 65
Use System APIs to Synthesize IPv6 Addresses 65
Test for IPv6 DNS64/NAT64 Compatibility Regularly 67

Resources 74

Document Revision History 76

Glossary 77

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

4

Contents

Figures, Tables, and Listings

Designing for Real-World Networks 13
Figure 1-1 Comparison of response times for simultaneous and sequential requests 19

Assessing Your Networking Needs 21
Table 2-1 The layers and families of OS X and iOS networking APIs 21

Supporting IPv6 DNS64/NAT64 Networks 57
Figure 10-1 A cellular network that provides separate IPv4 and IPv6 connectivity 59
Figure 10-2 A cellular network that deploys an IPv6 network with DNS64 and NAT64 59
Figure 10-3 DNS64 IPv4 to IPv6 translation process 60
Figure 10-4 Workflow of a DNS64/NAT64 transitional solution 61
Figure 10-5 Networking frameworks and API layers 63
Figure 10-6 A local Mac-based IPv6 DNS64/NAT64 network 68
Figure 10-7 Opening Sharing preferences 69
Figure 10-8 Configuring Internet sharing 69
Figure 10-9 Enabling a local IPv6 NAT64 network 70
Figure 10-10 Choosing a network interface to share 70
Figure 10-11 Enabling sharing over Wi-Fi 71
Figure 10-12 Accessing Wi-Fi network options 72
Figure 10-13 Setting up local Wi-Fi network options 72
Figure 10-14 Enabling Internet sharing 73
Figure 10-15 Starting Internet sharing 74
Figure 10-16 Internet sharing indicator 74
Listing 10-1 Using getaddrinfo to resolve an IPv4 address literal 66

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

5

Important: This is a preliminary document for an API or technology in development. Apple is supplying
this information to help you plan for the adoption of the technologies and programming interfaces described
herein for use on Apple-branded products. This information is subject to change, and software implemented
according to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future betas of the API or technology.

The world of networking is complex. Users can connect to the Internet using a wide range of technologies—cable
modems, DSL, Wi-Fi, cellular connections, satellite uplinks, Ethernet, and even traditional acoustic modems.
Each of these connections has distinct characteristics, including differences in bandwidth, latency, packet loss,
and reliability.

Satellite
connection

Cellular
connection

Wi-Fi
(802.11)

Ethernet,
Cable, DSL

Internet

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

6

About Networking

To add further complexity, the user’s connection to the Internet does not tell the whole story. On its way from
the user to an Internet server, the user’s network data passes through anywhere from one to dozens of physical
interconnects, any one of which could be a high-speed OC-768 line (at almost 40 billion bits per second), a
meager 300 baud modem (at 300 bits per second), or anything in-between. Worse, at any moment, the speed
of the user’s connection to a server could change drastically—someone could turn on a microwave oven that
interferes with the user’s Wi-Fi communications, the user could walk or drive out of cellular range, someone
on the other side of the world could start downloading a large movie from the server that the user is trying to
access, and so on.

As a developer of network-based software, your code must be able to adapt to changing network conditions,
including performance, availability, and reliability. This document tells you how.

At a Glance
Networks are inherently unreliable—cellular networks doubly so. As a result, good networking code tends to
be somewhat complex. Among other things, your software should:

 ● Transfer only as much data as required to accomplish a task. Minimizing the amount of data sent and
received prolongs battery life, and may reduce the cost for users on metered Internet connections that
bill by the megabyte.

 ● Avoid timeouts whenever possible. You probably don’t want a webpage to stop loading just because
the loading process took too long. Instead, provide a way for the user to cancel the operation.

In certain rare situations, data becomes irrelevant if delayed substantially. In these situations, it may make
sense to use a protocol that does not retransmit packets. For example, if you are writing a real-time
multiplayer game that sends tiny state messages to another device over a local area network (LAN) or
Bluetooth, it is often better to miss a message and make assumptions about what is happening on the
other device than to allow the operating system to queue those packets and deliver them all at once. For
most purposes, however, unless you have to maintain compatibility with existing protocols, you should
generally use TCP.

 ● Design user interfaces that allow the user to easily cancel transactions that are taking too long to
complete. If your app performs downloads of potentially large files, you should also provide a way to
pause those downloads and resume them later.

 ● Handle failures gracefully. A connection might fail for any number of reasons—the network might be
unavailable, a hostname might not resolve successfully, and so on. When failures occur, your program
should continue to function to the maximum degree possible in an offline state.

About Networking
At a Glance

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

7

To add further complexity, sometimes a user may have access to resources only while on certain networks.
For example, AirPlay can connect to an Apple TV only while on the same network. Corporate network
resources can be accessed only while at work or over a virtual private network (VPN). Visual Voicemail may
be accessible only over the cellular carrier’s network (depending on the carrier). And so on.

In particular, you should avoid interfaces that require the user to babysit your program when the network
is malfunctioning. Don’t display modal dialogs to tell the user that the network is down. Do retry
automatically when the network is working again. Don’t alert the user to connection failures that the user
did not initiate.

 ● Degrade gracefully when network performance is slow. Because the bandwidth between the user's
device and his or her ISP is limited, your app can reach other devices on the user’s home network much
more quickly than servers on the other side of the world. This difference becomes even greater when
someone else on the local network starts using that limited bandwidth for other purposes.

 ● Choose APIs that are appropriate for the task. If there is a high-level API that can meet your needs, use
it instead of rolling your own implementation using low-level APIs. If there is an API specific to what you
are doing (such as a game-centric API), use it.

By using the highest-level API, you are providing the operating system with more information about what
you are actually trying to accomplish so that it can more optimally handle your request. These higher-level
APIs also solve many of the most complex and difficult networking problems for you—caching, proxies,
choosing from among multiple IP addresses for a host, and so on. If you write your own low-level code to
perform the same tasks, you have to handle that complexity yourself (and debug and maintain the code
in question).

 ● Design your software carefully to minimize security risks. Take advantage of security technologies such
as Secure Sockets Layer (SSL) and Transport Layer Security (TLS) to prevent spoofing and hide sensitive
data from prying eyes, and scrutinize untrusted content to prevent buffer and integer overflows.

This document will help you learn these concepts and more.

Learn Why Networking Is Hard
Although writing networking code can be easy, for all but the most trivial networking needs, writing good
networking code is not. Depending on your software’s needs, it may need to adapt to changing network
performance, dropped network connections, connection failures, and other problems caused by the inherent
unreliability of the Internet itself.

About Networking
At a Glance

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

8

Relevant Chapter: Designing for Real-World Networks (page 13)

OS X and iOS Provide APIs at Many Levels
You can accomplish the following networking tasks in both OS X and iOS with identical or nearly identical
code:

 ● Performing HTTP/HTTPS requests, such as GET and POST requests

 ● Establishing a connection to a remote host, with or without encryption or authentication

 ● Listening for incoming connections

 ● Sending and receiving data with connectionless protocols

 ● Publishing, browsing, and resolving network services with Bonjour

Relevant Chapters: Assessing Your Networking Needs (page 21)

Discovering and Advertising Network Services (page 24)

Making HTTP and HTTPS Requests (page 31)

Using Sockets and Socket Streams (page 39)

Secure Communication Is Your Responsibility
Proper networking security is a necessity. You should treat all data sent by your user as confidential and protect
it accordingly. In particular, you should encrypt it during transit and protect against sending it to the wrong
person or server.

Most OS X and iOS networking APIs provide easy integration with TLS for this purpose. TLS is the successor to
the SSL protocol. In addition to encrypting data over the wire, TLS authenticates a server with a certificate to
prevent spoofing.

Your server should also take steps to authenticate the client. This authentication could be as simple as a
password or as complex as a hardware authentication token, depending on your needs.

Be wary of all incoming data. Any data received from an untrusted source may be a malicious attack. Your app
should carefully inspect incoming data and immediately discard anything that looks suspicious.

About Networking
At a Glance

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

9

Relevant Chapter: Using Networking Securely (page 41)

iOS and OS X Offer Platform-Specific Features
The networking environment on OS X is highly configurable and extensible. The System Configuration framework
provides APIs for determining and setting the current network configuration. Additionally, network kernel
extensions enable you to extend the core networking infrastructure of OS X by adding features such as a
firewall or VPN.

On iOS, you can use platform-specific networking APIs to handle authentication for captive networks and to
designate Voice over Internet Protocol (VoIP) network streams.

Relevant Sections: iOS Requires You to Handle Backgrounding and Specify Cellular Usage
Policies (page 46)

OS X Lets You Make Systemwide Changes (page 48)

Networking Must Be Dynamic and Asynchronous
A device’s network environment can change at a moment’s notice. There are a number of simple (yet devastating)
networking mistakes that can adversely affect your app’s performance and usability, such as executing
synchronous networking code on your program’s main thread, failing to handle network changes gracefully,
and so on. You can save a lot of time and effort by designing your program to avoid these issues to begin with
instead of debugging it later.

Relevant Chapter: Avoiding Common Networking Mistakes (page 49)

How to Use This Document
This document is intended to be read sequentially.

The first chapter, Designing for Real-World Networks (page 13), explains the challenges you will face when
writing software that uses networking, why latency matters, and other concepts that you should know before
you write the first line of networking code.

About Networking
How to Use This Document

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

10

The next chapter, Assessing Your Networking Needs (page 21), provides more details about choosing an API
family and determining what types of networking tasks your program will perform. This chapter then points
you to other chapters (Discovering and Advertising Network Services (page 24), Making HTTP and HTTPS
Requests (page 31), and Using Sockets and Socket Streams (page 39)) that describe some common networking
tasks that your program might need to perform.

Using Networking Securely (page 41) and Avoiding Common Networking Mistakes (page 49) provide guidance
that can help you avoid common networking mistakes.

Finally, Supporting IPv6 DNS64/NAT64 Networks (page 57) explains how to make sure your app is compatible
with IPv6-only networks.

See Also
This document is intended as a high-level overview of networking concerns in OS X and iOS. The documents
below provide additional depth and breadth.

Learn What’s Happening Under the Hood
A basic understanding of the way networks work can help you understand why they behave (or misbehave)
as they do. Thus, you should learn at least the basic underlying concepts before you write the first line of code.
At minimum, you should be familiar with packets and encapsulation, connection-based versus connectionless
protocols, subnets and routing, domain name lookup, bandwidth, and latency. To learn about this subject,
read the following document:

 ● Networking Concepts

Learn About Specific Technologies
For more in-depth information, consult one of the following guides for the primary documentation on a
particular subject:

 ● URL Session Programming Guide

 ● Stream Programming Guide

 ● CFNetwork Programming Guide

 ● NSNetServices and CFNetServices Programming Guide

Learn How to Share Documents Between OS X and iOS
The following documents describe techniques you can use to share documents between OS X and iOS:

About Networking
See Also

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

11

 ● iCloud Design Guide

 ● Document Transfer Strategies

About Networking
See Also

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

12

In an ideal world, networking “just works”. Your network connection is reliable, fast, and low latency. In the
real world, networking works most of the time, but when it breaks, it often breaks in strange and fascinating
ways. For example:

 ● An overloaded or broken network link can exhibit packet loss. If a link loses enough packets, it may be
difficult to establish connections across that link, and performance may fall to a tiny fraction of what you
would expect.

 ● When a network link becomes saturated, routers on either side of that link buffer the traffic to avoid losing
data. This adds additional latency. It is not uncommon to see latency measured in whole seconds over
heavily loaded DSL connections.

 ● Captive networks (often used in hotels, coffee shops, and other public places) may intercept your software’s
HTTP requests and provide a login page instead of the expected data.

 ● Firewalls between the user and the destination may block connections on all but a handful of ports.

 ● Firewalls that perform network address translation (NAT) may not allow remote servers to connect back
to ports on the user’s computer or other device.

 ● Third-party firewall software may block your software’s outgoing connection requests for minutes at a
time while waiting for the user to grant permission to open the connection.

Although your software cannot magically fix a truly broken network, poorly written networking code can easily
make things much, much worse. For example, suppose a server is heavily overloaded and is taking 45 seconds
to respond to each request. If your software connects to that server with a 30-second timeout, it contributes
to the server’s workload, but never successfully receives any data.

And even when the network is working perfectly, poorly written networking code can cause problems for the
user—poor battery life, poor performance, and so on. The sections in this chapter describe things that your
software should do to minimize users’ pain, both when conditions are ideal and when things go wrong.

Using Power And Bandwidth Efficiently
The most important thing to consider when writing networking code is that every time your software uploads
or downloads data, it costs the user both time and money.

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

13

Designing for Real-World Networks

A network operation costs the user time because:

 ● The user must wait for the operation to complete before performing some task.

 ● Data transfers often require wireless radios to remain active. For battery-powered devices, this reduces
the amount of time the user can use the device before its battery runs down.

A network operation also costs the user money because bandwidth isn’t free. Some costs include:

 ● Electrical power. Wireless hardware (Wi-Fi, cellular, and so on) consumes a fair amount of power. The
longer that wireless hardware is active, the more power it consumes.

 ● Actual data transferred. Many users (particularly cellular network users) pay for their data based on actual
use. The more bytes your software transfers, the more they pay. And even if the user has flat-rate service,
the ISP sets that rate based in part on how much bandwidth the average user consumes.

 ● Bandwidth. Whether the user’s network connection is metered by the byte or is a flat-rate service, the user
typically pays higher rates for faster connection speeds.

As a developer of networking software, it is your responsibility to minimize the power and bandwidth that
your software consumes.

Batch Your Transfers, and Idle Whenever Possible
When writing code in general, to the maximum extent possible, you should perform as much work as you can
and then return to an idle state. This applies doubly for network activity. For example:

 ● If your app streams video clips from an HTTP server, download the entire file at once (or at least a large
portion of that file) instead of requesting it a small piece at a time.

 ● If your app serves advertisements, download several ads at once and show them over a period of time,
rather than downloading them as they are needed.

 ● If your app downloads email messages from a server, download the first few messages at once under the
assumption that the user will probably read most of them, rather than downloading each one individually
as the user selects it.

Downloading content a bit at a time causes two problems. First, it makes the app more sensitive to minor
network delays, causing stalls, video stuttering, and so on. Second, it keeps the cellular or Wi-Fi radio powered
up almost continuously. This wastes power, particularly when your app is communicating over a cellular
connection. If your app instead downloads lots of data for a brief period of time and then allows the wireless
connection to go fully idle, you can significantly improve your users’ battery life.

Designing for Real-World Networks
Using Power And Bandwidth Efficiently

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

14

This applies particularly to socket programming. With few exceptions (such as remote terminal programs), you
should never send only a few bytes out at a time. Doing so is extremely inefficient in terms of the CPU load,
and can cause the operating system to send more packets than necessary.

Download the Smallest Resource Possible, and Cache Resources Locally
Downloading data has many costs associated with it—battery life, performance, and in many cases, actual
data transfer costs. For this reason, you should always download the smallest version of an asset that can serve
your needs.

For example, if you have an image catalog app that downloads a series of large images and renders them as
small thumbnails, you should render those thumbnails on the server. Your app should download only the
thumbnail initially, waiting to download the full-size version of an image until the user selects its thumbnail.
There are two reasons to do this:

 ● Transferring data consumes power by keeping the networking hardware and the CPU powered up for
longer periods of time. By decreasing the size of the assets your program transfers can improve your users’
battery life (assuming that this results in a net decrease in total data transferred, on average).

 ● If your users are on a metered Internet connection (such as a cellular phone), transferring smaller assets
can also reduce your users’ data bills.

For the same reason, keeping a local cache of download resources can save time, bandwidth, and battery life.
To do this, instead of asking the server for a resource, ask whether that resource has changed since you
downloaded it; if it has not, use the local copy.

A number of higher-level APIs in OS X and iOS (NSURL, for example) provide support for caching (NSURLCache,
for example). However, you must choose appropriate sizes for the caches. Whether you are using a built-in
caching API or are creating your own, you should experiment with cache sizes and replacement policies to
determine what makes the most sense for your app.

Designing for Real-World Networks
Using Power And Bandwidth Efficiently

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

15

Note: There is often a conflict between this goal and the previous goal—downloading lots of data
at once so that the network hardware can become idle.

For example, consider an application that loads a gallery of image thumbnails. If the average user
scrolls through several screens filled with thumbnails, the application should download enough
images to fill the first few screens in a single batch so that the network hardware can become idle
between downloads. On the other hand, if the average user never scrolls to the second screen, all
of those additional images are wasted bandwidth.

Each networking application must strike a balance between these conflicting goals, and it is up to
you, the developer, to decide how best to do so.

Handling Network Problems Gracefully
In today’s highly mobile world, you can no longer assume that Internet connectivity, once established, will
remain established, or that bandwidth will never increase or decrease—as it is said, change is the only constant.
As a developer, you must plan for these common failures and design your code to handle them appropriately.

Design for Variable Network Interface Availability
Network interface availability can change regularly for countless reasons, particularly in iOS. For example, the
user could:

 ● Be traveling on a subway, acquiring a wireless signal at every stop and losing the signal with every departure.

 ● Move outside the range of the current Wi-Fi network.

 ● Activate Airplane Mode or turn off Wi-Fi.

 ● Unplug a network cable.

Because of this, when writing software that uses the network, you must be prepared for network failures. When
a network error occurs, your program should decide what to do based on a number of considerations—most
importantly, whether the request was made explicitly by the user or not.

For requests made at the user’s behest:

 ● Always attempt to make a connection. Do not attempt to guess whether network service is
available, and do not cache that determination.

 ● If a connection fails, use the SCNetworkReachability API to help diagnose the cause of the
failure. Then:

 ● If the connection failed because of a transient error, try making the connection again.

Designing for Real-World Networks
Handling Network Problems Gracefully

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

16

 ● If the connection failed because the host is unreachable, wait for the
SCNetworkReachability API to call your registered callback. When the host becomes
reachable again, your app should retry the connection attempt automatically without user
intervention (unless the user has taken some action to cancel the request, such as closing
the browser window or clicking a cancel button).

 ● Try to display connection status information in a non-modal way. However, if you must display
an error dialog, be sure that it does not interfere with your app’s ability to retry automatically
when the remote host becomes reachable again. Dismiss the dialog automatically when the host
becomes reachable again.

For requests made in the background:

 ● Attempt to make a connection.

If desired, use SCNetworkReachability to avoid making the connection at inconvenient
times—for example, avoiding unnecessary traffic over a cellular connection by checking for the
kSCNetworkReachabilityFlagsIsWWAN flag.

Important: Checking the reachability flag does not guarantee that your traffic will never be
sent over a cellular connection. See Restrict Cellular Networking Correctly (page 46) for details.

 ● If the connection fails, use the SCNetworkReachability API to wait for the host to become
reachable again, then retry your request if it is still useful to do so.

 ● Do not display any dialog; users generally do not care about failures in background downloads
that they did not initiate.

 ● Avoid retrying too quickly even when the network reachability APIs tell your application that the
network has changed. When connections fail repeatedly, you should gradually increase the
amount of time you wait between attempts until you reach a reasonably long retry interval (15
minutes, for example).

Your program should be able to respond gracefully to changes in the current network interface. To support
this, use the SCNetworkReachabilityAPI. By registering for network change notifications, your program
is alerted when the available network interfaces change.

The Reachability sample code demonstrates registering a callback for notification when the current network
interface changes. Read SCNetworkReachability Reference for a complete discussion of the
SCNetworkReachability API.

Important: The SCNetworkReachability API is not intended for use as a preflight mechanism for
determining network connectivity . You determine network connectivity by attempting to connect. If
the connection fails, consult the SCNetworkReachability API to help diagnose the cause of the
failure.

Designing for Real-World Networks
Handling Network Problems Gracefully

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

17

Whether the requests are user-generated and background), the SCNetworkReachability API provides a
good way to watch for interface availability changes that may require you to reconnect existing connections.
When the network interface you are using goes away, you should quickly reconnect to avoid unnecessary
delays for the user.

Also, on iOS, if you are connected over a cellular connection, you should quickly reconnect in the background
whenever Wi-Fi service becomes available again. Wi-Fi connections use less battery power, are usually faster,
and often cost the user less money than cellular connections.

Design for Variable Network Speed
Your program must be prepared for the speed of the network to change, even when the current network
interface remains unchanged. For example, when a mobile device user changes locations, performance on
Wi-Fi or cellular networks can change significantly, either because of increased interference or because the
device was handed off to a busier cell site. It doesn’t take a big change in location either; even walking from
one room to another can cause significant changes in both Wi-Fi and cellular service speeds.

Further, even ignoring contention and interference, the interface itself tells you nothing about the actual
bandwidth available a few hops away. The Wi-Fi network might be fast when the user tries to connect to
Google, but the route between the user and your server could be going through a cellular modem or a satellite
uplink truck. Similarly, a user might have a gigabit Ethernet connection to servers on the local area network,
but only a 128-kilobit upstream connection to the outside world. For this reason, you should not make any
assumptions about the speed of the network based on the current network interface.

There is only one way to determine the network’s speed: use it. After you download a small amount of data,
you can establish an initial estimate of the network speed. You should continue to monitor your download
rate to maintain an accurate estimate, and then adjust your expectations accordingly. For example, if you are
streaming video and you determine that your streaming rate is no longer keeping up with playback, you might
switch silently to a lower bandwidth stream on the fly and continue playback as though nothing happened.
If you later determine that download speeds have improved, you can switch back just as silently.

Design for High Latency
As a developer, assume that your users might use a high-latency connection. High latency is particularly
common on some types of cellular network interfaces because of the limited number of time slots that can be
used by a given device. For example, the round-trip latency over an EDGE connection is often measured in
seconds. However, even the half-second latency caused by a satellite connection or a moderately busy DSL
connection can cause serious problems if you do not plan for it in your software design.

Designing for Real-World Networks
Handling Network Problems Gracefully

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

18

When an app makes multiple requests to one or more remote hosts, if it waits for the first request to return a
result before making the second one, the connection latency becomes additive; the second request is penalized
by the latency of the first request in addition to its own, the third request is penalized by the latency of the
first two requests, and so on.

To avoid this problem, whenever your program needs to send multiple messages (resource requests,
acknowledgments, and so on) that are not dependent on one another, send them all simultaneously rather
than waiting for a response to one message before sending the next. Figure 1-1 illustrates the speedup your
program gets from sending multiple messages simultaneously.

Figure 1-1 Comparison of response times for simultaneous and sequential requests

Response 2

Time

Time

Request 2 Response 2

Request 1

Request 2

Response 1

Request 1 Response 1

Sending requests one at a time

Sending multiple requests at the same time

If you use NSURLConnection in your iOS app, you can easily get a speedup by enabling HTTP pipelining.
When pipelining is enabled, your connection automatically sends multiple HTTP requests simultaneously.
Enable pipelining by calling the setHTTPShouldUsePipelining: method on the NSMutableURLRequest
object you provide to your connection.

Designing for Real-World Networks
Handling Network Problems Gracefully

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

19

Note: Some servers do not support pipelining. If you connect to a server that does not support
pipelining, the connection works but it does not improve performance.

Test Under Various Conditions
Xcode provides a tool called Network Link Conditioner that can simulate various network conditions, including
reduced bandwidth, high latency, DNS delays, packet loss, and so on. Before you ship any software that uses
networking, you should install this tool, enable it, then run your software to see how it performs under real-world
conditions.

Here are a few things to test:

 ● Make sure your software remains usable even with lousy bandwidth. Tune your bandwidth consumption
as much as you can.

 ● Increase the latency to three or four seconds. Make sure that any user-initiated operation is delayed by
only a few seconds, not by a few minutes.

 ● When the network connection drops packets, your software should continue to function, just more slowly.

You may also find it helpful to use third-party tools such as tcptrace to visualize your software’s network access
patterns under abusive network conditions.

Designing for Real-World Networks
Handling Network Problems Gracefully

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

20

http://www.tcptrace.org/

Before you can choose a networking API, you need to know a little bit about the networking API families that
OS X and iOS offer.

OS X and iOS provide three main user-space networking API layers. The first two—Foundation and CFNetwork
(based on Core Foundation)—are frameworks specific to OS X and iOS. The lowest layer, POSIX, is the same as
on any other UNIX- or Linux-based operating system.

Within each layer, there are functions or classes that support common networking tasks, such as connecting
to remote hosts (protocol streams), downloading the contents of URLs, and discovering services on your local
network. These layers are shown in Table 2-1.

Table 2-1 The layers and families of OS X and iOS networking APIs

Service discoveryURL loadingProtocol streamsLayer

NSNetServiceNSURLConnection and
NSURLRequest

NSStreamFoundation layer

CFNetServiceCFHTTPMessageCFStreamCore Foundation

layer

DNS Service Discoverylibcurl (for example. Note that
this is a third-party API)

kqueue

POSIX layer

Built on top of BSD sockets (directly or indirectly)

You can easily accomplish most client-side networking tasks using only Foundation classes. If you are writing
server code or you have specialized needs, you may want to use lower-level frameworks instead. However, as
a general rule, you should always choose the highest-level API that meets your needs.

Common Networking Tasks
Before you can decide which specific API to use, you must first assess what networking tasks your program
needs to perform.

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

21

Assessing Your Networking Needs

Support peer-to-peer networking for games. In iOS, the Game Kit framework provides support for peer-to-peer
communication, both globally (over the Internet) and locally (using a Bluetooth personal area network or a
Wi-Fi LAN).

You can use Game Kit in your app to simplify the following peer-to-peer networking tasks:

 ● Providing network communication for a multiplayer game

 ● Providing voice communication

Any peer-to-peer communication that is not covered by the tasks above should be accomplished with lower
level networking APIs described later in this section.

To learn more about Game Kit, read Game Center Programming Guide .

Support peer-to-peer networking for other apps. In iOS, the Multipeer Connectivity framework provides
support for peer-to-peer communication over infrastructure Wi-Fi, peer-to-peer Wi-Fi, and Bluetooth. To learn
more, read Discovering and Advertising Network Services (page 24).

Connect to a web server. The preferred way to send and receive short pieces of information is over a standard
protocol such as HTTP or HTTPS. By using these existing protocols, you minimize the amount of work needed
to support the connection on both the client and server side. HTTP also makes it easy to move to a secure
(HTTPS) connection—you just add a certificate on your server and then add a single letter to the first part of
the URL.

To learn more about APIs for making HTTP and HTTPS requests, read Making HTTP and HTTPS Requests (page
31).

To learn how to display a web page in your application, read Displaying Web and Multimedia Content (page
29).

Connect to an FTP server. Unless you must do so to maintain compatibility with existing servers, the use of
FTP is discouraged. FTP is an old protocol with serious limitations and no real security (data and passwords
are sent in cleartext).

With that in mind, if you just need to download a file over FTP, you should use the NSURLConnection API
and pass it the appropriate URL. This API is described in Making HTTP and HTTPS Requests (page 31), but can
also be used with ftp:// URLs.

For more complex requests, the CFNetwork framework (based on Core Foundation) provides the CFFTPStream
API for communicating with FTP servers. CFNetwork also provides the CFURLAccess API, which can be used
for deleting files on an FTP server. The details of these APIs are outside the scope of this document. To learn
more, read CFNetwork Programming Guide .

Assessing Your Networking Needs
Common Networking Tasks

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

22

Discover and advertise network services. OS X and iOS provide support for DNS Service Discovery, which
allows you to describe what services your program provides and discover other services on the user’s machine,
on nearby machines, or on one of the user’s home machines using Back to My Mac. You can then use that
information to communicate with other copies of your program or other programs that your program knows
how to talk to. For example, OS X uses DNS Service Discovery to let users find nearby printers, stream music
in iTunes from nearby computers, share screens in Finder, and so on.

To learn how to discover services on your local area network or on remote servers using DNS Service Discovery,
read Discovering and Advertising Network Services (page 24).

Resolve DNS hostnames. OS X and iOS provide Core-Foundation-layer and POSIX-layer name resolver APIs
for obtaining IP addresses for a hostname. To learn about these APIs, read Designing for Real-World
Networks (page 13). However, if you are resolving hosts because you want to connect to them, you should
generally connect by name instead. Read Avoid Resolving DNS Names Before Connecting to a Host (page 54)
in Avoiding Common Networking Mistakes (page 49) to learn why.

Use sockets or socket streams. If you need to make network requests in ways that are not supported by
higher-level APIs, you can use sockets (at both the POSIX layer and the Core Foundation layer) or socket streams
(at the Core Foundation layer). For more information, read Using Sockets and Socket Streams (page 39).

Communicate securely. OS X and iOS support the Transport Layer Security (TLS) protocol and its predecessor,
the Secure Sockets Layer (SSL), for encrypted communication and server trust determination. To learn more,
read Using Networking Securely (page 41).

Next Steps
Now that you have decided what you want to do, you can easily accomplish a wide array of networking tasks
in OS X and iOS, with little or no configuration. Many of the most common networking tasks and the
recommended methods for accomplishing them are briefly described in the chapters that follow. Keep in mind
that these are not comprehensive API discussions; each chapter ends with links to other documents that provide
in-depth information about these tasks.

Assessing Your Networking Needs
Next Steps

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

23

OS X and iOS provide four APIs for discovering and advertising network services:

 ● NSNetService—A high-level Objective-C API suitable for most app developers.

 ● CFNetService—A high-level C API suitable for use in Core Foundation code.

 ● DNS Service Discovery—A low-level C API suitable for cross-platform code. This API also offers more
flexibility than the higher-level APIs.

 ● Game Kit framework—A high-level Objective-C API that provides peer-to-peer communication support
for games, both locally (using infrastructure Wi-Fi and Bluetooth) and globally over the Internet.

In addition to these APIs, iOS offers the Multipeer Connectivity Framework, which provides support for
discovering and communicating with instances of your app and related apps on nearby devices using
infrastructure Wi-Fi, peer-to-peer Wi-Fi, and Bluetooth.

As a rule, you should use Game Kit only for game-related peer-to-peer networking. For other peer-to-peer
networking between iOS devices running iOS 7 and later, you should consider using the Multipeer Connectivity
framework.

For compatibility with older versions of iOS, you can also write your own networking code and use
CFNetService or NSNetService to advertise its availability.

Note: On devices that support Bluetooth, Bluetooth communication is automatically used by Game
Kit. (Bonjour over Bluetooth can also be enabled when using the DNS Service Discovery C API by
setting the interfaceIndex to kDNSServiceFlagsIncludeP2P. See Bonjour over Bluetooth on
iOS 5 and Later for details.)

Bonjour Service Overview
A Bonjour service advertisement consists of three parts:

 ● Service name—This name must be unique to a particular instance of your program running on a particular
computer.

 ● Service type—This must be the same for all instances of your program, and should be registered with the
Internet Assigned Numbers Authority (IANA).

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

24

Discovering and Advertising Network Services

 ● Domain—If the domain value is empty, the host chooses the appropriate domains in which to publish or
browse.

When an app browses for Bonjour services, it asks for services matching a particular type in a particular domain,
and it gets back a list of matching service names. It should then present an appropriate UI to the user. When
the user tells the app to connect to a particular service, the app should then connect to the service using a
connect-to-service API. (If this is not possible for some reason, the app can pass the service’s hostname and
port to a connect-by-name API or, if a connect-by-name API is not available, the app can ask Bonjour to resolve
the hostname, and the app can then connect by IP address and port number.)

Publishing a Network Service
Bonjour zero-configuration networking lets you advertise network services, such as a printer or a document
syncing service, on a network. There are three ways to publish a network service:

 ● For Objective-C and Core Foundation code, the recommended way is with the CFNetServices API.

 ● For portable C code that must run on operating systems other than iOS and OS X, the DNS Service Discovery
C API is recommended.

You can publish a network service with the following steps:

1. Create a socket to listen for connections to the service. See Writing a TCP-Based Server in Networking
Programming Topics for the recommended way to listen for connections on a network socket.

2. Create a service object, providing the port of your socket, the domain (usually an empty string), and the
service type string of your choosing:

 ● With Foundation, initialize an NSNetService object with the initWithDomain:type:name:port:
method.

 ● With Core Foundation, create a CFNetServiceRef object with the CFNetServiceCreate function.

 ● With the DNS Service Discovery API, call DNSServiceRegister to return a DNSServiceRef object.

3. Assign a delegate or callback:

 ● With Foundation, assign a delegate to the NSNetService object with the delegate method.

 ● With Core Foundation, assign a client callback to the CFNetServiceRef object with the
CFNetServiceSetClient function.

 ● With the DNS Service Discovery API, you should pass a client callback (and, optionally, a pointer to a
context object of your choosing) in your call to DNSServiceRegister. At this point, you are done
except for handling callbacks when they occur.

4. Schedule or reschedule the service, if necessary:

Discovering and Advertising Network Services
Bonjour Service Overview

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

25

 ● With Foundation, the service is automatically scheduled on the current run loop in the default mode.
If you need to schedule the object on another run loop or in a different mode, you should unschedule
it and reschedule it at this point.

 ● With Core Foundation, you must schedule the CFNetServicesRef object on a run loop by calling
CFNetServiceScheduleWithRunLoop.

 ● With the DNS Service Discovery API, call DNSServiceSetDispatchQueue to schedule the service
on a dispatch queue. (If you must support an OS prior to OS X v10.7, see the SRVResolver sample code
project for an example of how to use DNS Service Discovery without Grand Central Dispatch.)

5. Publish the service, if necessary:

 ● With Foundation, publish the service by calling the publish method.

 ● With Core Foundation, publish the service by calling CFNetServiceRegisterWithOptions.

 ● With the DNS Service Discovery API, no further action is necessary; the service was already published
when you called DNSServiceRegister.

After your service is published, you can listen for connections on your socket and set up input and output
streams when a connection is made.

Important: If you create a custom protocol, you should use a custom service type, and register that service
type with IANA. For details, see RFC 6335.

Browsing for and Connecting to a Network Service
The process for finding and resolving a network service is as simple as the process for publishing one. To
browse for network services in Objective-C, create an instance of the NSNetServiceBrowser class and assign
it a delegate. Then, call the searchForServicesOfType:inDomain: method on the service browser. The
netServiceBrowser:didFindService:moreComing: delegate method is called once for every service
found.

To connect to a service, first stop the browsing by calling stop (unless you have a specific reason to keep
browsing), then call the getInputStream:outputStream: method on the NSNetService object that
represents the service. The address of the service is resolved automatically.

You can also use theCFStreamCreatePairWithSocketToNetService function with aCFNetServiceRef
object to connect to a Bonjour service.

Discovering and Advertising Network Services
Bonjour Service Overview

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

26

http://tools.ietf.org/html/rfc6335

Important: If you are using ARC, you should read NSNetService and Automatic Reference Counting (ARC) .

Resolving a Network Service
You may need to resolve a network service manually to provide the service’s address to an API that does not
accept network service names. To resolve a network service in Objective-C, first stop the browsing by calling
stop (unless you have a specific reason to keep browsing), then call the resolveWithTimeout: method on
the NSNetService object that represents the service.

The netServiceDidResolveAddress:method is called on the service’s delegate when the service’s address
has been resolved. You can then access the service’s hostname with the hostName method or its address
information with the addresses method. To avoid unnecessary network traffic, you should also call stop on
the NSNetService object as soon as it returns a set of addresses.

Important: The resolution process returns both numerical IP addresses and a hostname. The IP addresses
can be an arbitrary mix of IPv4 and IPv6 addresses. Unless you are doing something unusual, you should
normally pass the hostname to any API that supports hostnames rather than using the IP addresses directly,
because otherwise you would otherwise have to write your own code to try connecting to each of the
multiple IP addresses in parallel or in series (described further in Avoid Resolving DNS Names Before
Connecting to a Host (page 54)).

The resolver caches the mapping from hostname to IP addresses, so future lookups do not result in any
additional network traffic.

Multipeer Connectivity Overview
The Multipeer Connectivity Framework provides a layer on top of Bonjour that lets you communicate with
apps running on nearby devices (over infrastructure Wi-Fi, peer-to-peer Wi-Fi, and Bluetooth) without having
to write lots of networking code specific to your app.

With Multipeer Connectivity, your app advertises its availability. It can then discover other instances of your
app (or other apps that share the same service type) running on nearby devices, and can invite those nearby
peers to join a session. If they accept the invitation, your app can send messages and files to one or more of
the connected peers with just a single method call.

Important: As with Bonjour, your app must provide a service type, and you should register that service
type with IANA. For details, see RFC 6335.

If you need stream-based communication, your app can open a unidirectional stream to any connected peer
(which can also open a unidirectional stream back to your app in response).

Discovering and Advertising Network Services
Multipeer Connectivity Overview

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

27

http://tools.ietf.org/html/rfc6335

Finally, Multipeer Connectivity provides the ability to share small amounts of data (such as the user’s screen
name) outside the context of a session, if desired, allowing you to provide the user with information that he
or she can use when choosing peers to invite into a session.

To Learn More
MultipeerConnectivity—ReadMultipeerConnectivityFrameworkReference andtheMultipeerGroupChat sample
code project.

Game Kit—Read Game Center Programming Guide , GameKit Framework Reference , and the GKRocket and
GKTank sample code projects.

NSNetService—Read NSNetServices and CFNetServices Programming Guide , NSNetServiceBrowser Class
Reference , NSNetServiceBrowserDelegate Protocol Reference , and NSNetServiceDelegate Protocol Reference . For
sample code, see the RemoteCurrency sample code project.

CFNetService—Read NSNetServices and CFNetServices Programming Guide and CFNetServices Reference .

DNS Service Discovery—ReadDNSServiceDiscoveryProgrammingGuide andDNSServiceDiscoveryCReference .

Discovering and Advertising Network Services
To Learn More

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

28

OS X and iOS provide an assortment of APIs to allow you to display web content and streaming multimedia
content. In general, if these higher-level multimedia- and web-specific APIs meet your needs, you should use
them rather than using networking APIs directly. The sections below briefly summarize these APIs.

Opening Web Content or Streaming Media in the Default Application
To open a webpage or streaming URL in the user’s default browser or media viewer:

 ● In iOS, use the openURL: method of the UIApplication class.

For a real-world example, see QA1629: Launching the App Store from an iOS application .

 ● In OS X, use the LSOpenCFURLRef or LSOpenFromURLSpec functions in the Launch Services API.

For details, see Launch Services Tasks in Launch Services Programming Guide .

Displaying Web Content in Your Application
OS X and iOS provide an easy way to load and display a webpage with the WebKit engine, the same rendering
engine used by Safari.

 ● In OS X, you load web content with the WebView class. You can add a web view by including it in your
application’s nib file or by programmatically constructing a WebView object and calling the
initWithFrame:frameName:groupName:method. Load content by calling theloadRequest:method
on the web view’s main frame (which you can obtain with the mainFrame method).

 ● In iOS, you load web content with the loadRequest: method of the UIWebView class. You can add a
web view by including it in your application’s nib file or by programmatically creating a UIWebView object
and initializing it with the initWithFrame: method.

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

29

Displaying Web and Multimedia Content

Note: Web views in iOS don’t provide access to their underlying connection when they load data,
which means a connection that can’t be resolved automatically (such as a connection that requires
authentication) fails.

For more information, see Simple Browsing in WebKit Objective-C Programming Guide (OS X) and UIWebView
Class Reference (iOS).

Displaying Streaming Multimedia Content in Your Application
There are several frameworks available for displaying streaming multimedia content in OS X and iOS:

 ● In OS X, use the QTKit Framework for basic playback or the AV Foundation framework for more complex
functionality.

 ● In iOS, use the Media Player Framework for basic playback or the AV Foundation framework for more
complex functionality.

For more information, read Getting Started with Audio & Video , Multimedia Programming Guide (iOS), QTKit
Application Programming Guide (OS X), and AVFoundation Programming Guide .

Displaying Web and Multimedia Content
Displaying Streaming Multimedia Content in Your Application

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

30

OS X and iOS provide a number of general-purpose APIs for making HTTP and HTTPS requests. With these APIs,
you can download files to disk, make simple HTTP and HTTPS requests, or precisely tune your request to the
specific requirements of your server infrastructure.

When choosing an API, you should first consider why you are making an HTTP request:

 ● If you are writing a Newsstand app, you should use the NKAssetDownload API to download content in
the background.

 ● If you need to download a file to disk in OS X, the easiest way is to use the NSURLDownload class. For
details, see Downloading the Contents of a URL to Disk (page 33).

 ● You should use CFHTTPStream if any of the following are true:

 ● You have a strict requirement not to use Objective-C.

 ● You need to override proxy settings.

 ● You need to be compatible with a particular non-compliant server.

For more information, see Making Requests Using Core Foundation (page 37).

 ● Otherwise, you should generally use the NSURLSession or NSURLConnection APIs.

The sections below describe these APIs in more detail.

Note: If you have specific needs, you can also write your own HTTP client implementation using
socket or socket-stream APIs. These APIs are described in Using Sockets and Socket Streams (page
39).

Making Requests Using Foundation
The following tasks describe common operations with the NSURLSession class, the NSURLConnection class,
and related classes.

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

31

Making HTTP and HTTPS Requests

Retrieving the Contents of a URL without Delegates
If you just need to retrieve the contents of a URL and do something with the results at the end, in OS X v10.9
and later or iOS 7 and later, you should use the NSURLSession class. You can also use the NSURLConnection
class for compatibility with earlier versions of OS X and iOS.

To do this, call one of the following methods: dataTaskWithRequest:completionHandler:
(NSURLSession), dataTaskWithURL:completionHandler: (NSURLSession), or
sendAsynchronousRequest:queue:completionHandler: (NSURLConnection). Your app must provide
the following information:

 ● As appropriate, either an NSURL object or a filled-out NSURLRequest object that provides the URL, body
data, and any other information that might be required for your particular request.

 ● A completion handler block that runs whenever the transfer finishes or fails.

 ● For NSURLConnection, an NSOperation queue on which your block should run.

If the transfer succeeds, the contents of the request are passed to the callback handler block as an NSData
object and an NSURLResponse object for the request. If the URL loading system is unable to retrieve the
contents of the URL, an NSError object is passed as the third parameter.

Retrieving the Contents of a URL with Delegates
If your app needs more control over your request, such as controlling whether redirects are followed, performing
custom authentication, or obtaining the data piecewise as it is received, you can use the NSURLSession class
with a custom delegate. For compatibility with earlier versions of OS X and iOS, you can also use the
NSURLConnection class with a custom delegate.

For the most part, the NSURLSession and NSURLConnection classes work similarly at a high level. However,
there are a few significant differences:

 ● The NSURLSession API provides support for download tasks that behave much like the NSURLDownload
class. This usage is described further in Downloading the Contents of a URL to Disk (page 33).

 ● When you create an NSURLSession object, you provide a reusable configuration object that encapsulates
many common configuration options. With NSURLConnection, you must set those options on each
connection independently.

 ● An NSURLConnection object handles a single request and any follow-on requests.

An NSURLSession object manages multiple tasks, each of which represents a single URL request and any
follow-on requests. You usually create a session when your app launches, then create tasks in much the
same way that you would create NSURLConnection objects.

Making HTTP and HTTPS Requests
Making Requests Using Foundation

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

32

 ● With NSURLConnection, each connection object has a separate delegate. With NSURLSession, the
delegate is shared across all tasks within a session. If you need to use a different delegate, you must create
a new session.

When you initialize an NSURLSession or NSURLConnection object, the connection or session is automatically
scheduled in the current run loop in the default run loop mode.

The delegate you provide receives notifications throughout the connection process, including intermittent
calls to the URLSession:dataTask:didReceiveData: or connection:didReceiveData:method when
a connection receives additional data from the server. It is the delegate’s responsibility to keep track of the
data it has already received, if necessary. As a rule:

 ● If the data can be processed a piece at a time, do so. For example, you might use a streaming XML parser.

 ● If the data is small, you might append it to an NSMutableData object.

 ● If the data is large, you should write it to a file and process it upon completion of the transfer.

When the URLSession:task:didCompleteWithError: or connectionDidFinishLoading:method is
called, the delegate has received the entirety of the URL’s contents.

Downloading the Contents of a URL to Disk
In OS X v10.9 and later or iOS 7 and later, if you need to download a URL and store the results as a file, but do
not need to process the data in flight, the NSURLSession class lets you download the URL directly to a file
on disk in a single step (as opposed to loading the URL into memory and then writing it out yourself). The
NSURLSession class also allows you to pause and resume downloads, restart failed downloads, and continue
downloading while the app is suspended, crashed, or otherwise not running.

In iOS, the NSURLSession class also launches your app in the background whenever a download finishes so
that you can perform any app-specific processing on the file.

Note: In older versions of OS X, you can also download files to disk with the NSURLDownload class.
The NSURLDownload class does not provide the ability to download files while the app is not running.

In older versions of iOS, you must use an NSURLConnection object to download the data to memory,
then write the data to a file yourself.

To use the NSURLSession class for downloading, your code must do the following:

1. Create a session with a custom delegate and the configuration object of your choice:

 ● If you want downloads to continue while your app is not running, you must provide a background
session configuration object (with a unique identifier) when you create the session.

Making HTTP and HTTPS Requests
Making Requests Using Foundation

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

33

 ● If you do not care about background downloading, you can create the session using any of the
provided session configuration object types.

2. Create and resume one or more download tasks within the session.

3. Wait until your delegate receives calls from the task or session. In particular, you must implement the
URLSession:downloadTask:didFinishDownloadingToURL: method to do something with a file
when the download finishes and the URLSession:task:didCompleteWithError: call to handle any
errors.

Note: The above steps are a greatly simplified view; depending on your needs, you may wish for
your session delegate to handle a number of other delegate methods for custom authentication,
redirect handling, and so on.

Making a POST Request
You can make an HTTP or HTTPS POST request in nearly the same way you would make any other URL request
(described in Retrieving the Contents of a URL with Delegates (page 32)). The main difference is that you must
first configure theNSMutableURLRequestobject you provide to theinitWithRequest:delegate:method.

You also need to construct the body data. You can do this in one of three ways:

 ● For uploading short, in-memory data, you should URL-encode an existing piece of data. This process is
described in Encoding URL Data.

 ● For uploading file data from disk, call the setHTTPBodyStream:method to tell NSMutableURLRequest
to read from an NSInputStream and use the resulting data as the body content.

 ● For large blocks of constructed data, call CFStreamCreateBoundPair to create a pair of streams, then
call the setHTTPBodyStream: method to tell NSMutableURLRequest to use one of those streams as
the source for its body content. By writing into the other stream, you can send the data a piece at a time.

Depending on how you handle things on the server side, you may also want to URL-encode the data you
send.)

To specify a different content type for the request, use the setValue:forHTTPHeaderField: method. If
you do, make sure your body data is properly formatted for that content type.

To obtain a progress estimate for a POST request, implement a
connection:didSendBodyData:totalBytesWritten:totalBytesExpectedToWrite:method in the
connection’s delegate.

Making HTTP and HTTPS Requests
Making Requests Using Foundation

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

34

Configuring Authentication
Performing authentication with NSURLSession and NSURLConnection is relatively straightforward. The way
you do this depends on the class you use and on the version of OS X or iOS that you are targeting.

For the NSURLSession class, your delegate should implement the
URLSession:task:didReceiveChallenge:completionHandler:method. In this method, you perform
whatever operations are needed to determine how to respond to the challenge, then call the provided
completion handler with a constant that indicates how the URL Loading System should proceed and, optionally,
a credential to use for authentication purposes.

For the NSURLConnection class:

 ● In OS X v10.7 and newer or iOS 5 and newer, your delegate should implement the
connection:willSendRequestForAuthenticationChallenge: method. This method must call a
method on the sender (the NSURLConnection object) to tell it how to proceed.

 ● In earlier versions, your delegate should implement both the
connection:canAuthenticateAgainstProtectionSpace: and
connection:didReceiveAuthenticationChallenge: methods.

The connection:didReceiveAuthenticationChallenge: method is equivalent to the
connection:willSendRequestForAuthenticationChallenge:method in later versions, and calls
a method on the sender (the NSURLConnection object) to tell it how to proceed.

The connection:canAuthenticateAgainstProtectionSpace: method should return YES if
[protectionSpace authenticationMethod] is any of NSURLAuthenticationMethodDefault,
NSURLAuthenticationMethodHTTPBasic, NSURLAuthenticationMethodHTTPDigest,
NSURLAuthenticationMethodHTMLForm, NSURLAuthenticationMethodNegotiate, or
NSURLAuthenticationMethodNTLM.

Possible Responses to an Authentication Challenge
Regardless of which class you use, your authentication handler method must examine the authentication
challenge and tell the URL Loading System how to proceed:

 ● To provide a credential for authentication, pass NSURLSessionAuthChallengeUseCredential as the
disposition (for NSURLSession) or call useCredential:forAuthenticationChallenge: (for
NSURLConnection).

For information about creating a credential object, read Creating a Credential Object (page 36).

 ● To continue the request without providing authentication, pass
NSURLSessionAuthChallengeUseCredential as the disposition with a nil credential (for
NSURLSession) or call continueWithoutCredentialForAuthenticationChallenge: (for
NSURLConnection).

Making HTTP and HTTPS Requests
Making Requests Using Foundation

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

35

 ● To cancel the authentication challenge, pass
NSURLSessionAuthChallengeCancelAuthenticationChallenge as the disposition (for
NSURLSession) or call cancelAuthenticationChallenge: (for NSURLConnection). If you cancel
the authentication challenge, the stream delegate’s error method is called.

 ● To tell the operating system to handle the challenge as it ordinarily would, pass
NSURLSessionAuthChallengePerformDefaultHandling as the disposition (for NSURLSession) or
call performDefaultHandlingForAuthenticationChallenge: (for NSURLConnection). If you
request default handling, then the operating system sends any appropriate credentials that exist in the
credentials cache.

Note: The performDefaultHandlingForAuthenticationChallenge: method was not
supported prior to OS X v10.7 or iOS 5.

 ● To reject a particular type of authentication during the negotiation process, with the intent to accept a
different method, pass NSURLSessionAuthChallengeRejectProtectionSpace as the disposition
(for NSURLSession) or call rejectProtectionSpaceAndContinueWithChallenge: (for
NSURLConnection).

Note: The rejectProtectionSpaceAndContinueWithChallenge: method was not
supported prior to OS X v10.7 or iOS 5.

Creating a Credential Object
Within your delegate’s connection:willSendRequestForAuthenticationChallenge: or
connection:didReceiveAuthenticationChallenge: method, you may need to provide an
NSURLCredential object that provides the actual authentication information.

 ● For simple login/password authentication, call credentialWithUser:password:persistence:.

 ● For certificate-based authentication, call credentialWithIdentity:certificates:persistence:
with a SecIdentityRef object (which is usually obtained from the user’s keychain by calling
SecItemCopyMatching).

Further Information
To learn more about the NSURLSession API, read URL Session Programming Guide . For related sample code,
see SimpleURLConnections , AdvancedURLConnections , and Using NSXMLParser to parse XML documents .

Making HTTP and HTTPS Requests
Making Requests Using Foundation

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

36

For details about the NSURLConnection API, read URL Session Programming Guide .

To learn more about using the NSStream API for making HTTP requests, read Setting Up Socket Streams in
Stream Programming Guide .

For an example of the setHTTPBodyStream: method and the CFStreamCreateBoundPair function, see
SimpleURLConnections in the iOS library. (The sample as a whole is designed to build and run on iOS, but the
networking portions of the code are also useful on OS X.)

Making Requests Using Core Foundation
Other than the syntax details, the request functionality in Core Foundation is closely related to what is available
at the Foundation layer. Thus, the examples in Making Requests Using Foundation (page 31) should be helpful
in understanding how to make requests using the CFHTTPStream API.

The Core Foundation URL Access Utilities are a C-language API that is part of the Core Foundation framework.
To learn more, read Core Foundation URL Access Utilities Reference .

The CFHTTPStream API is a C-language API that is part of the Core Foundation framework. (You can, of course,
use it in Objective-C code.) To learn more, read Communicating with HTTP Servers and Communicating with
Authenticating HTTP Servers in CFNetwork Programming Guide .

These APIs are the most flexible way to communicate with an HTTP server (short of using sockets or socket
streams directly), providing complete control over the message body as sent to the remote server, and control
over most of the message headers as well. These APIs are also more complex, and thus should be used only if
higher-level APIs cannot support your needs—for example, if you need to override the default system proxies.

Working with Web Services
If you are incorporating client-side web services communication in your OS X program, you can take advantage
of a number of technologies:

 ● The NSJSONSerialization class converts between native Cocoa objects and JavaScript Object Notation
(JSON).

 ● The NSXMLParser class provides a Cocoa API for SAX-style (streaming) parsing of XML content.

 ● The libxml2 library provides a cross-platform C API for SAX-style (streaming) and DOM-style (tree-based)
parsing of XML content. For libxml2 documentation, see http://xmlsoft.org/.

 ● The NSXMLDocument API (in OS X only) provides DOM-style support for XML content.

Making HTTP and HTTPS Requests
Making Requests Using Core Foundation

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

37

http://xmlsoft.org/

In addition, a number of third-party libraries exist for working with web services.

Important: The Web Services Core framework is deprecated and should not be used for new development.

Making HTTP and HTTPS Requests
Working with Web Services

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

38

This chapter describes ways to make socket connections that are completely under the control of your program.
Most programs would be better served by higher-level APIs such as NSURLConnection, which was described
in previous chapters. These APIs should be used only if you need to support some protocol other than the
protocols supported by built-in Cocoa or Core Foundation functionality.

Choosing a Socket API
At almost every level of networking, software can be divided into two categories: clients (programs that connect
to other apps) and services (programs that other apps connect to). At a high level, these lines are clear. Most
programs written using high-level APIs are purely clients. At a lower level, however, the lines are often blurry.

Socket and stream programming generally falls into one of the following broad categories:

 ● Packet-based communication—Programs that operate on one packet at a time, listening for incoming
packets, then sending packets in reply.

With packet-based communication, the only differences between clients and servers are the contents of
the packets that each program sends and receives, and (presumably) what each program does with the
data. The networking code itself is identical.

 ● Stream-based clients—Programs that use TCP to send and receive data as two continuous streams of
bytes, one in each direction.

With stream-based communication, clients and servers are somewhat more distinct. The actual data
handling part of clients and servers is similar, but the way that the program initially constructs the
communication channel is very different.

The API you choose for socket-based connections depends on whether you are making a connection to another
host or receiving a connection from another host. It also depends on whether you are using TCP or some other
protocol. Here are a few factors to consider:

 ● In OS X, if you already have networking code that is shared with non-Apple platforms, you can use POSIX
C networking APIs and continue to use your networking code as-is (on a separate thread). If your program
is based on a Core Foundation or Cocoa (Foundation) run loop, you can also use the Core Foundation
CFStream API to integrate the POSIX networking code into your overall architecture on the main thread.
Alternatively, if you are using Grand Central Dispatch (GCD), you can add a socket as a dispatch source.

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

39

Using Sockets and Socket Streams

In iOS, POSIX networking is discouraged because it does not activate the cellular radio or on-demand VPN.
Thus, as a general rule, you should separate the networking code from any common data processing
functionality and rewrite the networking code using higher-level APIs.

Note: If you use POSIX networking code, you should be aware that the POSIX networking API
is not protocol-agnostic (you must handle some of the differences between IPv4 and IPv6
yourself). It is a connect-by-IP API rather than a connect-by-name API, which means that you
must do a lot of extra work if you want to achieve the same initial-connection performance and
robustness that higher-level APIs give you for free. Before you decide to reuse existing POSIX
networking code, be sure to read Avoid Resolving DNS Names Before Connecting to a Host (page
54) in Avoiding Common Networking Mistakes (page 49).

 ● For daemons and services that listen on a port, or for non-TCP connections, use POSIX or Core Foundation
(CFSocket) C networking APIs.

 ● For client code in Objective-C, use Foundation Objective-C networking APIs. Foundation defines high-level
classes for managing URL connections, socket streams, network services, and other networking tasks. It is
also the primary non-UI Objective-C framework in OS X and iOS, providing routines for run loops, string
handling, collection objects, file access, and so on.

 ● For client code in C, use Core Foundation C networking APIs—part of the CFNetwork framework. The Core
Foundation framework and the CFNetwork framework are two of the primary C-language frameworks in
OS X and iOS. Together they define the functions and structures upon which the Foundation networking
classes are built.

Note: In older versions of OS X, CFNetwork is a subframework of the Core Services framework.

To Learn More
To learn more about how to use sockets and socket streams, read Using Sockets and Socket Streams.

Using Sockets and Socket Streams
To Learn More

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

40

Whether you are writing a banking app or a game, if your program uses networking, it should be secure. For
all but the most trivial pieces of data, it’s impossible for software to determine whether a user’s data is
confidential, embarrassing, or even dangerous. Large numbers of seemingly insignificant pieces of information
can, in aggregate, be a much greater concern than the sum of its parts.

For these reasons, always assume that every piece of data your program encounters could contain a bank
account number or a password, and secure it accordingly.

Some attacks your program might encounter include:

 ● Snooping—Attacks in which a third party sniffs your program’s data in transit.

 ● Man-in-the-middle attacks—Attacks in which a third party interposes its own computer between your
program and a server. Man-in-the-middle attacks include:

Spoofing and phishing—Creating false servers that masquerade as legitimate servers.

Tampering—Modifying data between the server and your program.

Session hijacking—Capturing authentication information and using it to pose as your users.

 ● Injection attacks—Attacks in which specially crafted data can cause client or server software to execute
commands other than the inspected ones. This commonly occurs when the program talks to a script
interpreter, such as a shell or a SQL database server.

 ● Buffer overflows and numeric overflows—Attacks in which specially crafted data can cause a program to
read or write data in parts of its address space where it shouldn’t, potentially leading to execution of
arbitrary executable code, disclosure of private information, or both.

This chapter explains how to defend against snooping and man-in-the-middle attacks. To learn more about
injection attacks, buffer overflows, and other aspects of software security, read Secure Coding Guide .

Enabling TLS or SSL
The Transport Layer Security (TLS) protocol provides data encryption for socket-based communication, along
with authentication of servers and (optionally) clients to prevent spoofing.

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

41

Using Networking Securely

OS X and iOS also provide support for the Secure Sockets Layer (SSL) protocol. Because TLS is the successor to
SSL, OS X and iOS use TLS by default if both protocols are supported.

Note: TLS and SSL are primarily designed for use in a client-server model. It’s more difficult to ensure
secure communication in a peer-to-peer environment with these protocols.

Connecting Securely to a URL
Connecting to a URL via TLS is trivial. When you create an NSURLRequest object to provide to the
initWithRequest:delegate: method, specify https as the scheme of the URL instead of http. The
connection uses TLS automatically with no additional configuration.

Connecting Securely Using Streams
You can use TLS with an NSStream object by calling setProperty:forKey: on it. Specify
NSStreamSocketSecurityLevelNegotiatedSSL as the property parameter and
NSStreamSocketSecurityLevelKey as the key parameter. If you need to work around compatibility bugs,
you can also specify a more specific protocol, such as NSStreamSocketSecurityLevelTLSv1.

Connecting Securely Using BSD Sockets
When making secure connections, if possible, you should use NSStream (as described in the previous section)
instead of using sockets directly. However, if you must work with BSD sockets directly, you must perform the
SSL or TLS encryption and decryption yourself. Depending on your platform, there are two ways to do this:

 ● In OS X, or in iOS 5 and later, you can use the Secure Transport API in the Security framework to handle
your SSL and TLS handshaking, encryption, and decryption. See Secure Transport Reference for details.

 ● In iOS and OS X, you can download an open source SSL or TLS implementation, such as OpenSSL and
include a compiled copy of that library (or some portion thereof) in your app bundle (or alongside your
nonbundled program). Be sure to comply with the licensing terms of any third-party libraries you might
use.

Using Networking Securely
Enabling TLS or SSL

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

42

Note: Although a version of OpenSSL libraries is included as part of OS X, the OpenSSL library does
not guarantee binary compatibility across different versions of OpenSSL. For this reason, linking to
the built-in copy of OpenSSL is deprecated as of OS X v10.7. If you want to use OpenSSL, provide
your own copy of the library so that you can control precisely which version of OpenSSL your program
is linked against.

Using Other Security Protocols in OS X
In addition to the default Secure Transport implementation of TLS, the following network security protocols
are available in OS X:

 ● The Kerberos protocol is available via the Kerberos framework. This protocol provides support for single
sign-on authentication over a network. For more information, read Security Overview and Authentication,
Authorization, and Permissions Guide .

 ● The Secure Shell (SSH) protocol is available. This protocol is commonly used for logging in to remote hosts
using the Terminal app. See ssh for more information.

 ● The OpenSSL implementation of TLS is available, but the preinstalled OpenSSL library is deprecated in OS
X v10.7 and later for binary compatibility reasons. If you require OpenSSL, provide your own copy of this
library instead, and statically link it into your program.

Common Mistakes
There are a number of common mistakes developers make when writing secure networking code. This section
provides suggestions for avoiding several of these mistakes.

Be Careful Who You Trust
If your app sends or receives potentially confidential data to or from a server, be certain that it authenticates
the server to ensure that it has not been spoofed. Be sure your server authenticates the client correctly to avoid
providing data to the wrong user. Also, be certain that the connection is established using appropriate
encryption.

Similarly, be sure that you store data only when necessary and provide it only to the minimum extent necessary
to perform a task. For example, to maximize privacy of users’ personal information, you might store your web
servers’ databases on separate servers, configured to accept SQL queries only from your web servers, and with
limited connectivity to the Internet as a whole. In other words, use proper privilege separation.

For more information, read Designing Secure Helpers and Daemons in Secure Coding Guide .

Using Networking Securely
Using Other Security Protocols in OS X

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

43

Be Careful What Data You Trust
Every program is at risk of attack by someone providing malformed or malicious content. This is particularly
true if your program obtains data from untrusted servers, or if your program obtains untrusted data from
trusted servers (forum posts, for example).

To protect against such attacks, your program should carefully examine all data received from the network or
from disk (because the user might have downloaded that data). If the data appears malformed in any way, do
not process it as you would other data.

For more information, read Validating Input and Interprocess Communication in Secure Coding Guide .

Know That Many Tiny Leaks Can Add Up to a Flood
Always take steps to ensure that the contents of your app’s Internet traffic remains private. Although certain
information may seem harmless by itself, a skilled attacker can combine that information with other information
to discover trends that might be a far greater cause for concern than any single data point by itself—a process
known as data mining .

For example, if someone wants to break into your house, a single post from the library on a Saturday evening
is probably harmless, but posts from the library at about the same time of day every Saturday for several weeks
in a row might not be so harmless, because they indicate your habits.

The data need not even be all about the same thing to cause harm. Knowing that someone likes to watch a
particular TV show might be harmless, but a complete profile of the sorts of shows that someone enjoys, the
products he or she buys, and the friends he or she interacts with might correlate strongly with some attribute
that the person considers private, such as religion or sexual orientation. In one particularly impressive (and
possibly apocryphal) story, a retail chain reportedly recognized that a man’s daughter was pregnant based on
her purchasing decisions even before her father did.

The risk of disclosure in aggregate is particularly problematic when it comes to things like identity theft. Your
app might leak a phone number, another app might leak a postal address, and so on. After the attacker has
amassed enough information about a victim, he or she can use social engineering techniques to convince a
third party to give him or her even more information, resulting in a feedback loop of information gathering
with devastating consequences.

For this reason, it’s important that your app use encrypted communication at all times, for all connections,
unless it is infeasible to do so. You never know when that seemingly harmless piece of information, when
combined with another seemingly harmless piece of information, might prove damaging or hurtful.

Using Networking Securely
Common Mistakes

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

44

Install Certificates Correctly
When connecting to a server using TLS or SSL, if your app gets an error saying that the certificate authority
that signed your certificate is unknown, assuming that you obtained your certificate from a reputable certificate
authority, this almost invariably means your certificate chain is missing or incomplete.

When your server accepts a connection encrypted with TLS or SSL, it provides two things: your server’s SSL
certificate and a complete chain of SSL certificates, beginning with your server’s certificate and ending with a
certificate signed by one of the trusted anchor certificates recognized by the operating system. If there are
certificates missing in your chain, you’ll get this error because the certificates earlier in the chain cannot be
verified without the certificates later in the chain.

To see what your server is actually sending out, type the following command in Terminal (replacing
www.example.com with your actual domain name) and press Return:

openssl s_client -showcerts -connect www.example.com:443

When you type this command, you should see your server’s certificate, followed by a series of intermediate
certificates. If you don’t, check your server’s configuration. To obtain the correct certificates to put in your
server’s certificate chain file, contact the certificate authority that provided your server’s SSL certificate.

Never Disable Certificate Chain Validation (Unless You Validate Them Yourself)
Disabling chain validation eliminates any benefit you might otherwise have gotten from using a secure
connection. The resulting connection is no safer than sending the request using unencrypted HTTP because
it provides no protection from spoofing by a fake server.

If you are using server certificates from a trusted certificate authority, be sure your certificates are installed
correctly (see the previous section).

If you are working with self-signed certificates temporarily, you should add them to your test machines’ trusted
anchors list. In OS X, you can do this using the Keychain Access utility. In iOS, you can use the
SecTrustCopyAnchorCertificates, SecTrustCreateWithCertificates, and
SecTrustSetAnchorCertificates functions within your program.

If you need to specifically allow a single self-signed certificate or a certificate signed for a different (specific)
host, or if you need to allow a certificate only for a single connection, you can learn safe ways to do this by
reading Overriding TLS Chain Validation Correctly.

Using Networking Securely
Common Mistakes

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

45

Networking in iOS and OS X are very similar, and most networking apps require little or no platform-specific
code. However, you should be aware of a few small differences.

On iOS, you can use platform-specific networking APIs to handle authentication for captive networks and to
designate Voice over Internet Protocol (VoIP) network streams. Also, iOS networking apps are much more likely
to run on multihomed devices (usually with cellular and Wi-Fi connections), and must properly clean up network
connections when the apps are put into the background.

The networking environment on OS X is highly configurable and extensible. The System Configuration framework
provides APIs for determining and setting the current network configuration. Additionally, network kernel
extensions enable you to extend the core networking infrastructure of OS X by adding features such as a
firewall or VPN.

This chapter describes these platform-specific differences.

iOS Requires You to Handle Backgrounding and Specify Cellular
Usage Policies
This section describes networking technologies and techniques that are specific to iOS, including information
about captive network support, backgrounding, and making Wi-Fi-only connections.

Restrict Cellular Networking Correctly
There are two ways to prevent connections from being sent over a cellular network. Which method you use
depends on your app’s requirements and goals.

The kSCNetworkReachabilityFlagsIsWWAN flag in the SCNetworkReachability API tells you which
interface will probably be used if your app connects to the specified host. However, this flag can be misleading
because:

 ● The Wi-Fi signal could disappear after your app checks reachability, but before it connects.

 ● Different hosts may be reachable over different interfaces. You cannot trust a reachability check for one
host to be valid for a different host (and you cannot trust a reachability check for a fake IP address, such
as 0.0.0.0).

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

46

Platform-Specific Networking Technologies

 ● Different IP addresses for the same host may be reachable over different interfaces. If a remote host has
both IPv4 and IPv6 addresses, iOS typically attempts to connect to both addresses simultaneously, then
uses whichever connection was established first and cancels the other connection attempt. If the user’s
cellular network provides IPv6 and the user’s Wi-Fi network doesn’t, the connection could be made either
using cellular or Wi-Fi, depending entirely on which network connects more quickly.

Note: In iOS 6, the cellular network is never used as the primary interface for IPv4 or IPv6 if
Wi-Fi is used as the primary interface for either IPv4 or IPv6, so this particular case is specific to
iOS 5 and earlier.

If your app must strictly avoid sending data over a cellular connection, your app must declare that policy
restriction explicitly when making the connection. If you are using reachability in an advisory fashion (for
example, to warn the user before uploading a large movie over the cellular network), you should also consider
making the connection with cellular connectivity disabled. Then, if the connection fails, ask the user for
permission to send data over the cellular network and try again without those flags.

At the Foundation layer, you can use the setAllowsCellularAccess:method on NSMutableURLRequest
to specify whether a request can be sent over a cellular connection. You can also use the
allowsCellularAccess to check the current value.

At the Core Foundation layer, you can achieve the same thing by setting the kCFStreamPropertyNoCellular
property before opening a stream obtained from the CFSocketStream or CFHTTPStream APIs.

In older versions of iOS, you can continue to use the kSCNetworkReachabilityFlagsIsWWAN as a best-effort
way of determining whether traffic will be sent over a cellular connection, but you should be aware of its
limitations.

Handle Backgrounding Correctly
Your app may be suspended when it goes into the background, which means that it can no longer handle
network traffic. In some cases, existing connections may even close while your app is suspended. To learn
techniques for coping with backgrounding, read Networking and Multitasking .

Register VoIP Sockets Correctly
The NSInputStream, NSOutputStream, CFStream, and NSURLConnection APIs have built-in support for
Voice over Internet Protocol (VoIP) communication. This support allows you to register a TCP connection as
being for VoIP purposes so that if your app gets suspended, data arriving on this socket causes your app to
be resumed.

Platform-Specific Networking Technologies
iOS Requires You to Handle Backgrounding and Specify Cellular Usage Policies

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

47

For more information, read Implementing a VoIP Application in App Programming Guide for iOS .

Register for Captive Network Support
A captive network is a Wi-Fi network that doesn’t provide Internet access until the user performs some action,
such as logging in, specifying payment, or agreeing to terms and conditions. Captive networks are common
in public areas, such as airports and hotels.

When a user joins a captive network, Captive Network Support typically provides a web sheet that allows the
user to authenticate with the network. If your application registers the SSID of the captive network, however,
the web sheet is suppressed, and the user can complete authentication in your application.

For more information, read CaptiveNetwork Reference .

OS X Lets You Make Systemwide Changes
The following sections explain where to learn about working with network interfaces in OS X and developing
network kernel extensions that extend the networking stack.

Develop Network Setup Applications
If you want to modify the current network configuration in your user-level application, use the System
Configuration framework.

To learn about the System Configuration architecture, read System Configuration Programming Guidelines .
Then read System Configuration Framework Reference to learn about the available APIs.

If your application specifically deals with connecting to wireless networks with Wi-Fi, you can use the Core
WLAN framework. For more information, read CoreWLAN Framework Reference .

Develop Network Kernel Extensions
If you want to modify or extend the networking infrastructure of OS X—for purposes such as implementing a
custom firewall, a custom VPN, or a bandwidth management system—you may need to write a kernel extension
(kext) that plugs in to the kernel’s networking subsystem. These extensions are called network kernel extensions,
or NKEs.

To learn the fundamentals of writing a kext, read Kernel Extension Programming Topics . Then read Network
Kernel Extensions Programming Guide to learn how to implement a network kext.

Platform-Specific Networking Technologies
OS X Lets You Make Systemwide Changes

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

48

When writing networking-based software, developers often make a few common design and usage mistakes
that can cause serious performance problems, crashes, and other misbehavior. This chapter highlights a few
of those mistakes and describes how to avoid or fix them.

Clean Up Your Connections
TCP connections remain open until either the connection is explicitly closed or a timeout occurs. Unless TCP
keepalive is enabled for the connection, a timeout occurs only if there is data waiting to be transmitted that
cannot be delivered. This means that if you do not close your idle TCP connections, they will remain open until
your program quits.

The recommended way to enable TCP keepalive is by setting the SO_KEEPALIVE flag on the socket with
setsockopt.

Note: In OS X, you can also globally change the behavior of all sockets on a particular machine by
setting the net.inet.tcp.always_keepalive sysctl to a nonzero value. You should not do this
in publicly shipping software because this flag affects the behavior of other software on the system.
However, this flag can be useful for diagnosing and working around misbehaving software. See the
sysctl man page for details.

Avoid POSIX Sockets and CFSocket on iOS Where Possible
Using POSIX sockets directly has both advantages and disadvantages relative to using them through a
higher-level API. The main advantages are:

 ● Sockets greatly simplify porting networking code to and from non-Apple platforms.

 ● You can support protocols other than TCP.

The main disadvantages are:

 ● Sockets have many complexities that are handled for you by higher-level APIs. Thus, you will have to write
more code, which usually means more bugs.

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

49

Avoiding Common Networking Mistakes

 ● In iOS, using sockets directly using POSIX functions or CFSocket does not automatically activate the
device’s cellular modem or on-demand VPN.

The most appropriate times to use sockets directly are when you are developing a cross-platform tool or
high-performance server software. In other circumstances, you typically should use a higher-level API.

Avoid Synchronous Networking Calls on the Main Thread
If you are performing network operations on your main thread, you must use only asynchronous calls.

Network communication is inherently prone to delays. For example, a DNS request that times out can take
upwards of half a minute, and a connect can take even longer. If you perform a synchronous networking
call—a call that waits for a response and then returns the data—the thread that made the call becomes blocked
in the kernel until the operation either completes or fails. If that thread happens to be your program’s main
thread, your program becomes unresponsive.

In an OS X GUI app, this causes the spinning wait cursor to appear. Menus become unresponsive, clicks and
keystrokes are delayed or lost, and your users may become frustrated.

In iOS, your app is killed by the watchdog timer if it doesn’t respond to user interface events for a predetermined
amount of time. The timeouts for most networking operations are longer than that of the iOS watchdog timer.
Thus, your app is guaranteed to be killed if your network connection fails during a synchronous networking
call.

If your iOS app generates a crash report with the exception code 0x8badfood, this means that the iOS watchdog
timer killed your app because it was unresponsive; such a crash may have been caused by a synchronous
networking call.

Cocoa (Foundation) and CFNetwork (Core Foundation) Code
The easiest and most common way to perform networking asynchronously is to schedule your networking
object in the current thread’s run loop.

All Foundation or CFNetwork networking objects—including NSURLConnection, NSStream / CFStream,
NSNetService / CFNetService, and CFSocket—have built-in run-loop integration. Each of these objects
has a set of delegate methods or callback functions that are called throughout your object’s network
communication.

Avoiding Common Networking Mistakes
Avoid Synchronous Networking Calls on the Main Thread

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

50

If you want to perform a computationally intensive task (such as processing a large downloaded file) over the
course of your network communication, you should do so on a separate thread. The NSOperation class lets
you encapsulate such a task in an operation object, which you can easily run on a separate thread by adding
it to an NSOperationQueue object.

For more information, read Run Loops in Threading Programming Guide . For sample code, see
LinkedImageFetcher and ListAdder .

POSIX Code
POSIX networking presents some unique challenges, and thus has some unique tips:

Create sockets correctly. The proper call for creating a TCP socket is:

socket(PF_INET, SOCK_STREAM, IPPROTO_TCP); // IPv4

socket(PF_INET6, SOCK_STREAM, IPPROTO_TCP); // IPv6

Note: A number of socket tutorials incorrectly use PF_INET or AF_INET for the third parameter,
which apparently works on a few operating systems, but fails completely on OS X because the
numerical value of AF_INET corresponds with that of IPPROTO_IGMP, not IPPROTO_TCP.

Also, a number of socket tutorials incorrectly use AF_INET for the first parameter, which works on
most platforms because the constants have the same value, but is not guaranteed to work.

You can create a UDP socket by replacing IPPROTO_TCPwith IPPROTO_UDP in the snippet above and replacing
SOCK_STREAM with SOCK_DGRAM.

If you use the select system call, keep track of which sockets are actually in use. A number of poorly written
socket-based programs incorrectly assume that they own every socket or file descriptor from 3 (or 0) up through
the highest-numbered socket that they currently have open, and use a simple for loop to fill in the file
descriptor set. This not only can result in poor performance, but also can cause incorrect behavior if the daemon
opens files that may end up with file descriptor numbers in that range.

Instead, you should keep two pieces of state in your networking code:

 ● An integer that keeps track of the highest-numbered socket that you currently have open. You must
update this (if needed) whenever you open or close a new socket.

 ● A complete FD_SET in which the relevant bit is set for every open socket. Instead of passing this set to
the select system call (which destroys the contents of any descriptor sets passed as parameters), you
should copy the descriptor set with FD_COPY and pass the copy to select.

Avoiding Common Networking Mistakes
Avoid Synchronous Networking Calls on the Main Thread

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

51

Note: The FD_COPY function in OS X is highly optimized. For maximum performance, do not
attempt to copy the file descriptor set yourself using a for loop.

Alternatively, if you have an array of file descriptors (or some other way to keep track of them), you can
construct a new FD_SET from that array.

Use run loops and nonblocking I/O to manage asynchronous reads. In all but the most trivial command-line
tools, POSIX networking should always be performed in a run-loop-based fashion using either GCD, the kqueue
API, or the select system call.

Avoid synchronous networking on the main thread. If you are using synchronous calls, POSIX networking
should never be performed on the main program thread of any GUI application or other interactive tool. This
includes:

 ● Reading from and writing to sockets that are not set to non-blocking.

 ● Connecting a socket.

 ● Performing DNS lookups (particularly with getaddrinfo, getnameinfo, getaddrinfo, and
gethostbyaddr).

Instead, either perform the synchronous calls on a separate thread or use an API that performs these operations
asynchronously, such as GCD, the kqueue API, or higher-level APIs that integrate with Cocoa run loops
(CFSocket or CFStream, for example).

For more information about the options available to you, read Assessing Your Networking Needs (page 21)
and Using Sockets and Socket Streams (page 39).

Set appropriate timeouts if you are using select. The select system call allows you to specify a period of
time to wait before returning control to your code. The value you choose for this timeout is very important:

 ● If your code needs to perform other operations in the background, this timeout value determines how
often those other operations run. The shorter the value, the more frequently your code can do other things
in the background, but the more CPU cycles it uses while waiting.

In general, if your app is waking up more than a few times per second (or even once per second on iOS),
you should probably be doing that work on a separate thread. Moreover, this is usually a sign that you’re
doing something wrong, such as polling to see whether a file has been deleted or modified instead of
using a more appropriate notification-based technology such as the kqueue API.

If you are using this wakeup to check to see if another thread within your application has done something,
you should consider using a pair of connected sockets instead. To do this, first a socket pair with
socketpair. Then add one of the connected sockets to your descriptor set. When the other thread needs

Avoiding Common Networking Mistakes
Avoid Synchronous Networking Calls on the Main Thread

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

52

to tell your networking thread about an event, it can wake your networking thread by writing data into
the other socket. Be sure to keep track of which sockets were created in this way so that your code can
handle the data differently depending on whether it came from an outside connection or from within
your app.

 ● If your code does not need to perform any operations in the background, you should pass NULL. Passing
NULL ensures that your code takes as little CPU as possible while waiting for incoming connections or
data.

In addition, if you are using timeouts, be aware that the select system call returns EINTR when the timer
fires. Your code should be prepared for this return value and should not treat it as an error.

Use POSIX sockets efficiently (if at all). If you are using POSIX sockets directly:

 ● Handle or disable SIGPIPE.

When a connection closes, by default, your process receives a SIGPIPE signal. If your program does not
handle or ignore this signal, your program will quit immediately. You can handle this in one of two ways:

 ● Ignore the signal globally with the following line of code:

signal(SIGPIPE, SIG_IGN);

 ● Tell the socket not to send the signal in the first place with the following lines of code (substituting
the variable containing your socket in place of sock):

int value = 1;

setsockopt(sock, SOL_SOCKET, SO_NOSIGPIPE, &value, sizeof(value));

For maximum compatibility, you should set this flag on each incoming socket immediately after calling
accept in addition to setting the flag on the listening socket itself.

 ● Use nonblocking sockets where possible.

 ● Keep the socket’s send buffer full to the extent possible.

 ● Handle incoming data early and often to keep the socket’s receive buffer empty.

 ● Support both IPv4 and IPv6.

 ● Check return values from socket reads and writes.

Be prepared to handle EAGAIN and EWOULDBLOCK errors, which indicate that no data is available when
reading, or that no output buffer space is available when writing. These errors are normal, non-fatal errors;
your program should not close the connection when it gets them.

Avoiding Common Networking Mistakes
Avoid Synchronous Networking Calls on the Main Thread

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

53

For an example of POSIX code that follows these rules, see Writing a TCP-Based Server in Networking
Programming Topics .

Avoid Resolving DNS Names Before Connecting to a Host
The preferred way to connect to a host is with an API that accepts a DNS name, such as CFHost or
CFNetService.

Although your program can resolve a DNS name and then connect to the resulting IP address, you should
generally avoid doing so. DNS lookups usually return multiple IP addresses, and (at the application layer) it is
not always obvious which IP address is best for connecting to the remote host. For example:

 ● Most modern computers and other mobile devices are multihomed. This means that they exist on more
than one physical network at the same time. Your computer might be on Wi-Fi and Ethernet; your cellular
phone might be on Wi-Fi and 3G; and so on. However, not all hosts are necessarily available over every
connection.

For example, the Remote app on your iPhone lets you control your Apple TV, but only over the Wi-Fi
connection. The two devices cannot communicate with one another over your phone’s cellular connection
because your Apple TV has no public IP address.

 ● If both your device and the server you are connecting to have multiple IP addresses on different networks,
the best IP address for connecting to the server may depend on which network the connection will pass
through.

For example, if your home media server has one IP address on your wired LAN and a second IP address
on a Wi-Fi network, the operating system can often detect the performance difference and favor the faster,
LAN-based IP address. By contrast, if your program looks up the IP address, it has approximately an equal
chance of connecting to either IP address.

 ● If the server has both IPv4 and IPv6 protocols, it may not be reachable using both protocols. By using a
host-name-based API, the operating system can try both simultaneously and use the first one that connects
successfully. If your program looks up the IP address, it might not connect successfully, depending on
which address it chose.

 ● If the DNS server is an older server that does not handle IPv6 and you request an AAAA (IPv6 address)
record, synchronous DNS queries will block until the request times out (30 seconds by default). If you use
an API that takes a hostname, the operating system hides this problem from you by issuing IPv4 and IPv6
requests in parallel, and then canceling the outstanding IPv6 lookup as soon as an IPv4 connection is
established successfully.

Avoiding Common Networking Mistakes
Avoid Resolving DNS Names Before Connecting to a Host

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

54

 ● If a server is using Bonjour to advertise a service over a link-local IP address (because DHCP is not working
on the network for some reason), if your app looks up that service and resolves it to an IP address, the
resulting address will work only as long as the device retains that IP address. If the DHCP server comes
online, the IP address may change, at which time your program will no longer be able to connect to the
old address.

If you connect using the advertised name instead, your program will continue to be able to connect even
after the server finally obtains an IP address (so long as the computer or device running that program
receives the updated advertisement).

 ● If the server is on the other side of an on-demand VPN that becomes available only when the user tries
to access a whitelisted host, connecting by IP does not activate that VPN, which means that the host will
never become reachable.

If you cannot avoid resolving a DNS name yourself, first check to see whether the CFHost API fulfills your
requirements; it provides a list of addresses for a given host instead of just a single address. If the CFHost API
does not meet your needs, use the DNS Service Discovery API.

For more information, read Networking Concepts , Writing a TCP-Based Server in Networking Programming
Topics , CFHost Reference , and DNS Service Discovery C Reference . For sample code, see SRVResolver .

Do Not Use NSSocketPort (OS X) or NSFileHandle for General Socket
Communication
Despite its name, the NSSocketPort class (available in OS X only) is not intended for general network
communication. The NSSocketPort class is part of Cocoa’s distributed objects system, which is intended for
controlled communication between Cocoa applications on a single machine or on a local network. For more
information on the distributed objects system, see Distributed Objects Programming Topics .

Similarly, the NSFileHandle class is not designed for general networking. The NSFileHandle class circumvents
the standard networking stack, which carries the following drawbacks:

 ● Network connections made with NSFileHandle can be significantly less efficient than those made with
the standard networking APIs.

 ● Historically, using NSFileHandle for networking has resulted in either extremely poor performance or
strange, hard-to-debug failures.

 ● There is no straightforward way to use TLS authentication and encryption on connections made with
NSFileHandle.

 ● In iOS, NSFileHandle does not automatically activate the device’s cellular modem or on-demand VPN.

Avoiding Common Networking Mistakes
Do Not Use NSSocketPort (OS X) or NSFileHandle for General Socket Communication

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

55

Instead, use NSStream for remote connections and CFSocket for listening. For details, see Writing a TCP-Based
Server in Networking Programming Topics .

Avoiding Common Networking Mistakes
Do Not Use NSSocketPort (OS X) or NSFileHandle for General Socket Communication

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

56

With IPv4 address pool exhaustion imminent, enterprise and cellular providers are increasingly deploying IPv6
DNS64 and NAT64 networks. A DNS64/NAT64 network is an IPv6-only network that continues to provide access
to IPv4 content through translation. Depending on the nature of your app, the transition has different
implications:

 ● If you’re writing a client-side app using high-level networking APIs such as NSURLSession and the
CFNetwork frameworks and you connect by name, you should not need to change anything for your app
to work with IPv6 addresses. If you aren’t connecting by name, you probably should be. See Avoid Resolving
DNS Names Before Connecting to a Host (page 54) to learn how. For information on CFNetwork, see
CFNetwork Framework Reference .

 ● If you’re writing a server-side app or other low-level networking app, you need to make sure your socket
code works correctly with both IPv4 and IPv6 addresses. Refer to RFC4038: Application Aspects of IPv6
Transition.

What’s Driving IPv6 Adoption
Major network service providers, including major cellular carriers in the the United States, are actively promoting
and deploying IPv6. This is due to a variety of factors.

Note: World IPv6 Launch is an organization that tracks deployment activity at a global scale. To see
recent trends, visit the World IPv6 Launch website.

IPv4 Address Depletion
For decades, the world has known that IPv4 addresses would eventually be depleted. Technologies such as
Classless Inter-Domain Routing (CIDR) and network address translation (NAT) helped delay the inevitable.
However, on January 31, 2011, the top-level pool of Internet Assigned Numbers Authority (IANA) IPv4 addresses
was officially exhausted. The American Registry for Internet Numbers (ARIN) is projected to run out of IPv4
addresses in the summer of 2015—a countdown is available here.

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

57

Supporting IPv6 DNS64/NAT64 Networks

https://tools.ietf.org/html/rfc4038
https://tools.ietf.org/html/rfc4038
http://www.worldipv6launch.org/measurements/
https://www.arin.net/resources/request/ipv4_countdown.html

IPv6 More Efficient than IPv4
Aside from solving for the IPv4 depletion problem, IPv6 is more efficient than IPv4. For example, IPv6:

 ● Avoids the need for network address translation (NAT)

 ● Provides faster routing through the network by using simplified headers

 ● Prevents network fragmentation

 ● Avoids broadcasting for neighbor address resolution

4G Deployment
The fourth generation of mobile telecommunication technology (4G) is based on packet switching only. Due
to the limited supply of IPv4 addresses, IPv6 support is required in order for 4G deployment to be scalable.

Multimedia Service Compatibility
IP Multimedia Core Network Subsystem (IMS) allows services such as multimedia SMS messaging and Voice
over LTE (VoLTE) to be delivered over IP. The IMS used by some service providers is compatible with IPv6 only.

Cost
Service providers incur additional operational and administrative costs by continuing to support the legacy
IPv4 network while the industry continues migrating to IPv6.

Supporting IPv6 DNS64/NAT64 Networks
What’s Driving IPv6 Adoption

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

58

DNS64/NAT64 Transitional Workflow
To help slow the depletion of IPv4 addresses, NAT was implemented in many IPv4 networks. Although this
solution worked temporarily, it proved costly and fragile. Today, as more clients are using IPv6, providers must
now support both IPv4 and IPv6. This is a costly endeavor.

Figure 10-1 A cellular network that provides separate IPv4 and IPv6 connectivity

Ideally, providers want to drop support for the IPv4 network. However, doing so prevents clients from accessing
IPv4 servers, which represent a significant portion of the Internet. To solve this problem, most major network
providers are implementing a DNS64/NAT64 transitional workflow. This is an IPv6-only network that continues
to provide access to IPv4 content through translation.

Figure 10-2 A cellular network that deploys an IPv6 network with DNS64 and NAT64

Supporting IPv6 DNS64/NAT64 Networks
DNS64/NAT64 Transitional Workflow

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

59

In this type of workflow, the client sends DNS queries to a DNS64 server, which requests IPv6 addresses from
the DNS server. When an IPv6 address is found, it’s passed back to the client immediately. However, when an
IPv6 address isn’t found, the DNS64 server requests an IPv4 address instead. The DNS64 server then synthesizes
an IPv6 address by prefixing the IPv4 address, and passes that back to the client. In this regard, the client always
receives an IPv6-ready address. See Figure 10-3.

Figure 10-3 DNS64 IPv4 to IPv6 translation process

Supporting IPv6 DNS64/NAT64 Networks
DNS64/NAT64 Transitional Workflow

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

60

When the client sends a request to a server, any IPv6 packets destined for synthesized addresses are automatically
routed by the network through a NAT64 gateway. The gateway performs the IPv6-to-IPv4 address and protocol
translation for the request. It also performs the IPv4 to IPv6 translation for the response from the server. See
Figure 10-4.

Figure 10-4 Workflow of a DNS64/NAT64 transitional solution

IPv6 and App Store Requirements
Compatibility with IPv6 DNS64/NAT64 networks will be an App Store submission requirement, so it is essential
that apps ensure compatibility. The good news is that the majority of apps are already IPv6-compatible. For
these apps, it’s still important to regularly test your app to watch for regressions. Apps that aren’t IPv6-compatible
may encounter problems when operating on DNS64/NAT64 networks. Fortunately, it’s usually fairly simple to
resolve these issues, as discussed throughout this chapter.

Common Barriers to Supporting IPv6
Several situations can prevent an app from supporting IPv6. The sections that follow describe how to resolve
these problems.

 ● IP address literals embedded in protocols. Many communications protocols, such as Session Initiation
Protocol (SIP), File Transfer Protocol (FTP), WebSockets, and Peer-to-Peer Protocol (P2PP), include IP address
literals in protocol messages. For example, the FTP parameter commands DATA PORT and PASSIVE

Supporting IPv6 DNS64/NAT64 Networks
IPv6 and App Store Requirements

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

61

exchange information that includes IP address literals. Similarly, IP address literals may appear in the values
of SIP header fields, such as To, From, Contact, Record-Route, and Via. See Use High-Level Networking
Frameworks (page 63) and Don’t Use IP Address Literals (page 64).

 ● IP address literals embedded in configuration files. Configuration files often include IP address literals.
See Don’t Use IP Address Literals (page 64).

 ● Network preflighting. Many apps attempt to proactively check for an Internet connection or an active
Wi-Fi connection by passing IP address literals to network reachability APIs. See Connect Without
Preflight (page 64).

 ● Using low-level networking APIs. Some apps work directly with sockets and other raw network APIs such
as gethostbyname, gethostbyname2, and inet_aton. These APIs are prone to misuse or they only
support IPv4—for example, resolving hostnames for the AF_INET address family, rather than the
AF_UNSPEC address family. See Use High-Level Networking Frameworks (page 63).

 ● Using small address family storage containers. Some apps and networking libraries use address storage
containers—such as uint32_t, in_addr, and sockaddr_in—that are 32 bits or smaller. See Use
Appropriately Sized Storage Containers (page 65).

Ensuring IPv6 DNS64/NAT64 Compatibility
Adhere to the following guidelines to ensure IPv6 DNS64/NAT64 compatibility in your app.

Supporting IPv6 DNS64/NAT64 Networks
Ensuring IPv6 DNS64/NAT64 Compatibility

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

62

Use High-Level Networking Frameworks
Apps requiring networking can be built upon high-level networking frameworks or low-level POSIX socket
APIs. In most cases, the high-level frameworks are sufficient. They are capable, easy to use, and less prone to
common pitfalls than the low-level APIs.

Figure 10-5 Networking frameworks and API layers

 ● WebKit. This framework provides a set of classes for displaying web content in windows, and implements
browser features such as following links, managing a back-forward list, and managing a history of pages
recently visited. WebKit simplifies the complicated process of loading webpages—that is, asynchronously
requesting web content from an HTTP server where the response may arrive incrementally, in random
order, or partially due to network errors. For more information, see WebKit Framework Reference .

 ● Cocoa URL loading system. This system is the easiest way to send and receive data over the network
without providing an explicit IP address. Data is sent and received using one of several classes—such as
NSURLSession, NSURLRequest, and NSURLConnection—that work with NSURL objects. NSURL objects
let your app manipulate URLs and the resources they reference. Create an NSURL object by calling the
initWithString: method and passing it a URL specifier. Call the
checkResourceIsReachableAndReturnError: method of the NSURL class to check the reachability
of a host. For more information, see URL Session Programming Guide .

 ● CFNetwork. This Core Services framework provides a library of abstractions for network protocols, which
makes it easy to perform a variety of network tasks such as working with BSD sockets, resolving DNS hosts,
and working with HTTP/HTTPS. To target a host without an explicit IP address, call the

Supporting IPv6 DNS64/NAT64 Networks
Ensuring IPv6 DNS64/NAT64 Compatibility

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

63

CFHostCreateWithName method. To open a pair of TCP sockets to the host, call the
CFStreamCreatePairWithSocketToCFHost method. For more information, see CFNetwork Concepts
in CFNetwork Programming Guide .

If you do require the low-level socket APIs, follow the guidelines in RFC4038: Application Aspects of IPv6
Transition.

Note: Getting StartedwithNetworking, Internet, andWeb andNetworkingOverview provide detailed
information on networking frameworks and APIs.

Don’t Use IP Address Literals
Make sure you aren’t passing IPv4 address literals in dot notation to APIs such as getaddrinfo and
SCNetworkReachabilityCreateWithName. Instead, use high-level network frameworks and address-agnostic
versions of APIs, such as getaddrinfo and getnameinfo, and pass them hostnames or fully qualified domain
names (FQDNs). Seegetaddrinfo(3) Mac OS X Developer Tools Manual Page andgetnameinfo(3)
Mac OS X Developer Tools Manual Page.

Note: In iOS 9 and OS X 10.11 and later, NSURLSession and CFNetwork automatically synthesize
IPv6 addresses from IPv4 literals locally on devices operating on DNS64/NAT64 networks. However,
you should still work to rid your code of IP address literals.

Connect Without Preflight
The Reachability APIs (see SCNetworkReachability Reference) are intended for diagnostic purposes after
identifying a connectivity issue. Many apps incorrectly use these APIs to proactively check for an Internet
connection by calling the SCNetworkReachabilityCreateWithAddress method and passing it an IPv4
address of 0.0.0.0, which indicates that there is a router on the network. However, the presence of a router
doesn’t guarantee that an Internet connection exists. In general, avoid preflighting network reachability. Just
try to make a connection and gracefully handle failures. If you must check for network availability, avoid calling
the SCNetworkReachabilityCreateWithAddress method. Call the
SCNetworkReachabilityCreateWithName method and pass it a hostname instead.

Some apps also pass the SCNetworkReachabilityCreateWithAddress method an IPv4 address of
169.254.0.0, a self-assigned link-local address, to check for an active Wi-Fi connection. To check for Wi-Fi or
cellular connectivity, look for the network reachability flag kSCNetworkReachabilityFlagsIsWWAN instead.

Supporting IPv6 DNS64/NAT64 Networks
Ensuring IPv6 DNS64/NAT64 Compatibility

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

64

https://tools.ietf.org/html/rfc4038
https://tools.ietf.org/html/rfc4038

Use Appropriately Sized Storage Containers
Use address storage containers, such as sockaddr_storage, that are large enough to store IPv6 addresses.

Check Source Code for IPv6 DNS64/NAT64 Incompatibilities
Check for and eliminate IPv4-specific APIs, such as:

 ● inet_addr()

 ● inet_aton()

 ● inet_lnaof()

 ● inet_makeaddr()

 ● inet_netof()

 ● inet_network()

 ● inet_ntoa()

 ● inet_ntoa_r()

 ● bindresvport()

 ● getipv4sourcefilter()

 ● setipv4sourcefilter()

If your code handles IPv4 types, make sure the IPv6 equivalents are handled too.

IPv6IPv4

AF_INET6AF_INET

PF_INET6PF_INET

struct in_addr6struct in_addr

struct sockaddr_in6struct sockaddr_in

kDNSServiceProtocol_IPv6kDNSServiceProtocol_IPv4

Use System APIs to Synthesize IPv6 Addresses
If your app needs to connect to an IPv4-only server without a DNS hostname, use getaddrinfo to resolve
the IPv4 address literal. If the current network interface doesn’t support IPv4, but supports IPv6, NAT64, and
DNS64, performing this task will result in a synthesized IPv6 address.

Supporting IPv6 DNS64/NAT64 Networks
Ensuring IPv6 DNS64/NAT64 Compatibility

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

65

Listing 10-1 shows how to resolve an IPv4 literal using getaddrinfo. Assuming you have an IPv4 address
stored in memory as four bytes (such as {192, 0, 2, 1}), this example code converts it to a string (such as
"192.0.2.1"), usesgetaddrinfo to synthesize an IPv6 address (such as astruct sockaddr_in6 containing
the IPv6 address "64:ff9b::192.0.2.1") and tries to connect to that IPv6 address.

Listing 10-1 Using getaddrinfo to resolve an IPv4 address literal

#include <sys/socket.h>

#include <netdb.h>

#include <arpa/inet.h>

#include <err.h>

uint8_t ipv4[4] = {192, 0, 2, 1};

struct addrinfo hints, *res, *res0;

int error, s;

const char *cause = NULL;

char ipv4_str_buf[INET_ADDRSTRLEN] = { 0 };

const char *ipv4_str = inet_ntop(AF_INET, &ipv4, ipv4_str_buf,
sizeof(ipv4_str_buf));

memset(&hints, 0, sizeof(hints));

hints.ai_family = PF_UNSPEC;

hints.ai_socktype = SOCK_STREAM;

hints.ai_flags = AI_DEFAULT;

error = getaddrinfo(ipv4_str, "http", &hints, &res0);

if (error) {

errx(1, "%s", gai_strerror(error));

/*NOTREACHED*/

}

s = -1;

for (res = res0; res; res = res->ai_next) {

s = socket(res->ai_family, res->ai_socktype,

res->ai_protocol);

if (s < 0) {

cause = "socket";

Supporting IPv6 DNS64/NAT64 Networks
Ensuring IPv6 DNS64/NAT64 Compatibility

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

66

continue;

}

if (connect(s, res->ai_addr, res->ai_addrlen) < 0) {

cause = "connect";

close(s);

s = -1;

continue;

}

break; /* okay we got one */

}

if (s < 0) {

err(1, "%s", cause);

/*NOTREACHED*/

}

freeaddrinfo(res0);

Note: The ability to synthesize IPv6 addresses was added to getaddrinfo in iOS 9.2 and OS X
10.11.2. However, leveraging it does not break compatibility with older system versions. See
getaddrinfo(3) Mac OS X Developer Tools Manual Page.

Test for IPv6 DNS64/NAT64 Compatibility Regularly
The easiest way to test your app for IPv6 DNS64/NAT64 compatibility—which is the type of network most
cellular carriers are deploying—is to set up a local IPv6 DNS64/NAT64 network with your Mac. You can then
connect to this network from your other devices for testing purposes. See Figure 10-6.

Supporting IPv6 DNS64/NAT64 Networks
Ensuring IPv6 DNS64/NAT64 Compatibility

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

67

Important: IPv6 DNS64/NAT64 network setup options are available in OS X 10.11 and higher. In addition,
a Mac-Based IPv6 DNS64/NAT64 network is compatible with client devices that have implemented support
for RFC6106: IPv6 Router Advertisement Options for DNS Configuration. If your test device is not an iOS or
OS X device, make sure it supports this RFC. Note that, unlike DNS64/NAT64 workflows deployed by service
providers, a Mac-Based IPv6 DNS64/NAT64 always generates synthesized IPv6 addresses. Therefore, it does
not provide access to IPv6-only servers outside of your local network.

Figure 10-6 A local Mac-based IPv6 DNS64/NAT64 network

To set up a local IPv6 Wi-Fi network using your Mac

1. Make sure your Mac is connected to the Internet, but not through Wi-Fi .

2. Launch System Preferences from your Dock, LaunchPad, or the Apple menu.

Supporting IPv6 DNS64/NAT64 Networks
Ensuring IPv6 DNS64/NAT64 Compatibility

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

68

https://tools.ietf.org/html/rfc6106

3. Press the Option key and click Sharing. Don’t release the Option key yet.

Figure 10-7 Opening Sharing preferences

4. Select Internet Sharing in the list of sharing services.

Figure 10-8 Configuring Internet sharing

5. Release the Option key.

Supporting IPv6 DNS64/NAT64 Networks
Ensuring IPv6 DNS64/NAT64 Compatibility

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

69

6. Select the Create NAT64 Network checkbox.

Figure 10-9 Enabling a local IPv6 NAT64 network

7. Choose the network interface that provides your Internet connection, such as Thunderbolt Ethernet.

Figure 10-10 Choosing a network interface to share

Supporting IPv6 DNS64/NAT64 Networks
Ensuring IPv6 DNS64/NAT64 Compatibility

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

70

8. Select the Wi-Fi checkbox.

Figure 10-11 Enabling sharing over Wi-Fi

Supporting IPv6 DNS64/NAT64 Networks
Ensuring IPv6 DNS64/NAT64 Compatibility

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

71

9. Click Wi-Fi Options, and configure the network name and security options for your network.

Figure 10-12 Accessing Wi-Fi network options

Figure 10-13 Setting up local Wi-Fi network options

Supporting IPv6 DNS64/NAT64 Networks
Ensuring IPv6 DNS64/NAT64 Compatibility

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

72

10. Select the Internet Sharing checkbox to enable your local network.

Figure 10-14 Enabling Internet sharing

Supporting IPv6 DNS64/NAT64 Networks
Ensuring IPv6 DNS64/NAT64 Compatibility

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

73

11. When prompted to confirm you want to begin sharing, click Start.

Figure 10-15 Starting Internet sharing

Once sharing is active, you should see a green status light and a label that says Internet Sharing: On. In the
Wi-Fi menu, you will also see a small, faint arrow pointing up, indicating that Internet Sharing is enabled. You
now have an IPv6 NAT64 network and can connect to it from other devices in order to test your app.

Figure
10-16

Internet sharing indicator

Important: To ensure that testing takes place strictly on the local IPv6 network, make sure your test devices
don’t have other active network interfaces. For example, if you are testing with an iOS device, make sure
cellular service is disabled so you are only testing over Wi-Fi.

Resources
For more information on implementing networking, see:

 ● Networking Programming Topics

Supporting IPv6 DNS64/NAT64 Networks
Resources

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

74

 ● CFNetwork Programming Guide

 ● NSURLSession Class Reference

 ● WebKit Framework Reference

For more information on the IPv6 transition, see:

 ● WWDC15 Video: Your App and Next Generation Networks

 ● RFC4038: Application Aspects of IPv6 Transition

 ● World IPv6 Launch website

 ● American Registry for Internet Numbers (ARIN) IPv4 Depletion Countdown

For technical issues encountered while transitioning to IPv6, see:

 ● Apple Developer Forums

 ● Developer Technical Support

Supporting IPv6 DNS64/NAT64 Networks
Resources

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

75

https://developer.apple.com/videos/wwdc/2015/?id=719
https://tools.ietf.org/html/rfc4038
http://www.worldipv6launch.org/measurements/
https://www.arin.net/resources/request/ipv4_countdown.html
http://developer.apple.com/forums
http://developer.apple.com/support/technical

This table describes the changes to Networking Overview .

NotesDate

Updated to include information about using system APIs to synthesize
IPv6 addresses.

2015-10-29

Updated to include expanded information about the IPv6 transition.2015-10-21

Moved some content to URL Loading System Programming Guide.2014-03-10

Corrected minor technical errors.2013-09-18

Added information about how to prevent the use of cellular data.2013-01-28

New document that provides a starting point for learning about
networking in OS X and iOS.

2012-07-19

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

76

Document Revision History

Address Resolution Protocol (ARP) A protocol for
determining the hardware address of a computer or
other device based on its IP address.

application layer The topmost layer of the
networking protocol stack. This layer consists of data
formats and protocols specific to a given application.
For example, the HTTP (hypertext transport protocol)
standard is an application-layer protocol.

broadcast address A special address that sends a
packet simultaneously to every device on a local
area network.

core router A router that provides service for major
Internet backbone routes. Core routers are powerful
devices that must handle a large volume of traffic
and usually must manage a large number of
simultaneous routes. Core routers participate in route
advertisements to discover or announce changes in
the network topology.

default gateway The default router used for
outgoing traffic if there is no explicit route for the
destination IP in the system’s routing table.

domain name A human-readable name that
identifies an Internet or intranet site; for example,
developer.apple.com is a domain name. By resolving
a domain name, an application can obtain a
corresponding IP address that is suitable for sending
data to that site.

edge router A router that provides connectivity
between a customer site and an upstream ISP. Edge
routers generally route between only two or three
different networks, and thus usually do not
participate in route advertisements.

encapsulation The act of wrapping one packet
inside another packet (usually of a different type).
For example, on a local area network, your IP packets
are encapsulated within Ethernet packets. The
Ethernet packets provide information about their
destination within the local area network. The IP
packets inside them provide information about what
to do with the packets once they reach the public
Internet.

fragmentation The process of breaking up a packet
into smaller pieces to accommodate network
connections with a smaller maximum packet size
(referred to as the maximum transmission unit, or
MTU).

header In the context of packets, the first part of a
packet (before the actual payload) that contains
information about where the packet should be sent.
In the context of HTTP, a series of values that provide
information about the content of a request or reply,
such as the hostname, caching policies, and so on.

hop Any one of a series of physical links that make
up the route from one host to another.

host Any device that is connected to a network. It
may be a client computer, a server, a mobile phone,
or even a network-attached printer.

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

77

Glossary

hostname (or host name) A DNS name that points
to a specific host (or a group of hosts that mimic a
single host).

infrastructure device Any device that provides
support for a network’s basic operation—for
example, a router, a Wi-Fi access point, or an
Ethernet switch.

Internet Control Message Protocol (ICMP) A
low-level networking protocol that provides
out-of-band control messages that are used by the
operating system when making TCP connections.
ICMP is used mainly to deliver connection failure
notifications—“connection refused” and “host
unreachable” messages, for example. However, it is
also used by some network diagnostic tools, such
as ping and traceroute.

IP (Internet Protocol) layer The networking layer
that provides basic transport of packets across the
Internet. It sits above the physical layer (hardware
interconnects) and below the transport layer (TCP
and UDP, for example).

IP address A number that uniquely identifies a
single host on the Internet (short for Internet
Protocol address). An IP address can be in one of
two forms: an IPv4 address or an IPv6 address.

IPv4 address An IP address consisting of four 8-bit
numbers (for a total of 32 bits). For example, the IP
address for developer.apple.com is 17.254.2.129.

IPv6 address An IP address consisting of eight
groups of 16-bit hexadecimal numbers (for a total
of 128 bits). If several groups in a row are all zero,
you can omit those groups and replace them with
a double colon (but only once per IP address). For
example, the IPv6 address for example.com is
2001:500:88:200::10.

latency The amount of time it takes for a packet to
reach its destination, usually measured in
milliseconds. Latency is usually expressed as
round-trip latency, which refers to the amount of
time for a packet to reach its destination and for the
response packet to reach the original host. Latency
is important for two reasons. First, it increases the
amount of time it takes to establish a connection.
Second, it dramatically reduces performance when
using protocols that require the client to wait for a
response before sending subsequent requests.

link A physical connection between two hosts on
a network (or a virtual connection that emulates a
physical connection) with no intermediate routers
(except for link-layer switches).

link layer The lowest layer of the network protocol
stack. This layer provides support for the physical
transport of packets from one host to another across
a local area network or other physical link.

listening socket (or listen socket) A socket
configured to listen for incoming connections.

Maximum Transmission Unit (MTU) The largest
packet size that can be delivered across a particular
link. The MTU is limited by the actual communication
hardware, and usually represents the maximum
payload size supported by the largest physical packet
that the hardware supports. However, in some cases
(such as gigabit Ethernet), the default MTU may be
further limited in software to maintain backwards
compatibility with legacy hardware that does not
support larger packets.

multicast A special type of packet that is
simultaneously delivered to a multitude of hosts on
the network, but not to every host (broadcast).

neighbor discovery protocol (NDP) A protocol
used by IPv6 over Ethernet to learn about other
devices on the physical network. Among other

Glossary

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

78

things, neighbor discovery can be used to learn the
hardware addresses of nearby devices, discover
routers and name servers, and determine
information about upstream links, such as their
Maximum Transmission Unit (MTU).

netblock See subnet.

netmask A collection of bits indicating which
portion of an IPv4 address is the network part and
which portion is the host part. If the network part of
the destination address is the same as the network
part of the source address, the two hosts are
considered to be within the same subnet.

network address A special reserved address within
each IPv4 network in which the host part is all zeros.
This address was used by older operating systems
as the broadcast address, so for historical
compatibility reasons, this number is reserved.

network address translation (NAT) A form of
packet rewriting performed by a firewall in which
packets are modified to contain a different source
or destination IP address before passing them on.
NAT is most commonly used to make traffic from
multiple devices appear to come from a single
device, often for security or load balancing purposes.

network interface A piece of hardware (or virtual
hardware) that represents the endpoint of a link.

packets A discrete unit of data that is sent across a
computer network.

path MTU discovery A process by which one host
determines the largest packet that can be sent to a
destination without fragmenting it. This allows the
host to fragment the data ahead of time, which
prevents packets from potentially being fragmented
more than once before reaching their final
destination. Path MTU discovery works by sending
packets with the “Don't Fragment” bit set. If any

router along the path responds by sending an ICMP
packet with the Fragmentation Needed bit set, the
host then tries progressively smaller sizes until the
packet reaches its destination successfully. See also
Maximum Transmission Unit (MTU).

payload The data contents of a packet (as distinct
from the structure of the packet itself).

physical layer See link layer.

port numbers A number that uniquely identifies a
particular service on a given host. Port numbers are
further divided according to whether they are TCP
or UDP ports.

recursion The use of recursive queries. A recursive
query asks the domain name server to perform
recursion on the client’s behalf. If the domain name
server allows recursive queries, it then sends a query
to the root name server asking which server knows
the answer, then asks that server, and so on, until it
reaches a server that actually knows the answer to
the query. See also recursion.

route The path that packets take from one host to
another host. If the two hosts are on the same
physical network, the route consists of a single link;
if not, it passes through one or more routers.

router A device that routes packets between two
or more networks. A router determines which
network should receive each packet based on a set
of routing rules. Most routers also communicate with
other routers to optimize those rules as network
links are added and removed.

router address The IP address of your router.

routing The process of taking a packet on one
physical network and retransmitting it on a different
physical network, using a set of rules to determine
which network should receive each packet. A device
that performs routing is called a router.

Glossary

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

79

shared network A network in which every packet
is received by every device on the network. This is
the opposite of a switched network.

subnet A range of IP addresses in which packets
from one host can be sent directly to another host
without going through an intermediate router.

switched network A physical network in which an
infrastructure device (called a switch) directs packets
based on their destination. This improves network
performance by ensuring that only the hosts that
need to receive a given packet actually see it. This
is the opposite of a shared network.

trailer The last part of a packet (after the payload)
that usually contains a checksum of the payload
data.

Transmission Control Protocol (TCP) A
transport-layer protocol that provides bidirectional,
stream-based delivery of data, with flow control and
delivery guarantees (automatic retry). Contrast with
User Datagram Protocol (UDP).

transport layer The networking layer that sits on
top of the IP layer and can provide such features as
port numbers, delivery guarantees, flow control, and
checksums. The two most common transport-layer
protocols are the Transmission Control Protocol (TCP)
and the User Datagram Protocol (UDP).

User Datagram Protocol (UDP) A transport-layer
protocol that provides unidirectional, packet-based
delivery of data, with best-effort delivery (no
retransmission). Contrast with Transmission Control
Protocol (TCP).

Glossary

2015-10-29 | Copyright © 2004, 2015 Apple Inc. All Rights Reserved. Apple Confidential Information.

80

Apple Inc.
Copyright © 2004, 2015 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer or device for personal use only and to
print copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.

No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-branded products.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AirPlay, Apple TV, Back to
My Mac, Bonjour, Cocoa, Finder, iPhone, iTunes,
Keychain, Mac, Mac OS, Numbers, Objective-C,
OS X, Safari, and Xcode are trademarks of Apple
Inc., registered in the U.S. and other countries.

iCloud is a service mark of Apple Inc., registered
in the U.S. and other countries.

App Store is a service mark of Apple Inc.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Java is a registered trademark of Oracle and/or
its affiliates.

SPEC is a registered trademark of the Standard
Performance Evaluation Corporation (SPEC).

UNIX is a registered trademark of The Open
Group.

APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT, ERROR OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.

Some jurisdictions do not allow the exclusion of
implied warranties or liability, so the above exclusion
may not apply to you.

	Networking Overview
	Contents
	Figures, Tables, and Listings
	Introduction
	Designing for Real-World Networks
	Using Power And Bandwidth Efficiently
	Batch Your Transfers, and Idle Whenever Possible
	Download the Smallest Resource Possible, and Cache Resources Locally

	Handling Network Problems Gracefully
	Design for Variable Network Interface Availability
	Design for Variable Network Speed
	Design for High Latency
	Test Under Various Conditions

	Assessing Your Networking Needs
	Common Networking Tasks
	Next Steps

	Discovering and Advertising Network Services
	Bonjour Service Overview
	Publishing a Network Service
	Browsing for and Connecting to a Network Service
	Resolving a Network Service

	Multipeer Connectivity Overview
	To Learn More

	Displaying Web and Multimedia Content
	Opening Web Content or Streaming Media in the Default Application
	Displaying Web Content in Your Application
	Displaying Streaming Multimedia Content in Your Application

	Making HTTP and HTTPS Requests
	Making Requests Using Foundation
	Retrieving the Contents of a URL without Delegates
	Retrieving the Contents of a URL with Delegates
	Downloading the Contents of a URL to Disk
	Making a POST Request
	Configuring Authentication
	Possible Responses to an Authentication Challenge
	Creating a Credential Object

	Further Information

	Making Requests Using Core Foundation
	Working with Web Services

	Using Sockets and Socket Streams
	Choosing a Socket API
	To Learn More

	Using Networking Securely
	Enabling TLS or SSL
	Connecting Securely to a URL
	Connecting Securely Using Streams
	Connecting Securely Using BSD Sockets

	Using Other Security Protocols in OS X
	Common Mistakes
	Be Careful Who You Trust
	Be Careful What Data You Trust
	Know That Many Tiny Leaks Can Add Up to a Flood
	Install Certificates Correctly
	Never Disable Certificate Chain Validation (Unless You Validate Them Yourself)

	Platform-Specific Networking Technologies
	iOS Requires You to Handle Backgrounding and Specify Cellular Usage Policies
	Restrict Cellular Networking Correctly
	Handle Backgrounding Correctly
	Register VoIP Sockets Correctly
	Register for Captive Network Support

	OS X Lets You Make Systemwide Changes
	Develop Network Setup Applications
	Develop Network Kernel Extensions

	Avoiding Common Networking Mistakes
	Clean Up Your Connections
	Avoid POSIX Sockets and CFSocket on iOS Where Possible
	Avoid Synchronous Networking Calls on the Main Thread
	Cocoa (Foundation) and CFNetwork (Core Foundation) Code
	POSIX Code

	Avoid Resolving DNS Names Before Connecting to a Host
	Do Not Use NSSocketPort (OS X) or NSFileHandle for General Socket Communication

	Supporting IPv6 DNS64/NAT64 Networks
	What’s Driving IPv6 Adoption
	IPv4 Address Depletion
	IPv6 More Efficient than IPv4
	4G Deployment
	Multimedia Service Compatibility
	Cost

	DNS64/NAT64 Transitional Workflow
	IPv6 and App Store Requirements
	Common Barriers to Supporting IPv6
	Ensuring IPv6 DNS64/NAT64 Compatibility
	Use High-Level Networking Frameworks
	Don’t Use IP Address Literals
	Connect Without Preflight
	Use Appropriately Sized Storage Containers
	Check Source Code for IPv6 DNS64/NAT64 Incompatibilities
	Use System APIs to Synthesize IPv6 Addresses
	Test for IPv6 DNS64/NAT64 Compatibility Regularly

	Resources

	Revision History
	Glossary

